Advertisement

Kinetics and Catalysis

, Volume 53, Issue 3, pp 374–383 | Cite as

Mathematical simulation of self-oscillations in methane oxidation on nickel: An isothermal model

  • E. A. Lashina
  • V. V. KaichevEmail author
  • N. A. Chumakova
  • V. V. Ustyugov
  • G. A. Chumakov
  • V. I. Bukhtiyarov
Article

Abstract

The dynamics of methane oxidation on nickel was studied by mathematical modeling within the framework of an 18-step microkinetic scheme. The model examined predicts the appearance of self-oscillations caused by the periodic oxidation-reduction of nickel in the reaction proceeding under isothermal conditions.

Keywords

Surface Coverage Catalyst Surface Methane Oxidation Nickel Oxide Mathematical Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slin’ko, M.G. and Slin’ko, M.M., Usp. Khim., 1980, vol. 49, no. 4, p. 561.Google Scholar
  2. 2.
    Schuth, F., Henry, B.E., and Schmidt, L.D., Adv. Catal., 1993, vol. 39, p. 51.CrossRefGoogle Scholar
  3. 3.
    Slinko, M.M. and Jaeger, N.I., Stud. Surf. Sci. Catal., 1994, vol. 86, p. 1.CrossRefGoogle Scholar
  4. 4.
    Imbihl, R. and Ertl, G., Chem. Rev., 1995, vol. 95, p. 697.CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Mingos, D.M.P., and Hayward, D.O., Catal. Lett., 2001, vol. 72, nos. 3–4, p. 147.CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2002, vol. 83, nos. 3–4, p. 149.CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2003, vol. 86, no. 4, p. 235.CrossRefGoogle Scholar
  8. 8.
    Bychkov, V.Yu., Tyulenin, Yu.P., Korchak, V.N., and Aptekar, E.L., Appl. Catal., A, 2006, vol. 304, p. 21.CrossRefGoogle Scholar
  9. 9.
    Tulenin, Yu.P., Sinev, M.Yu., Savkin, V.V., and Korchak, V.N., Catal. Today, 2004, vols. 91–92, p. 155.CrossRefGoogle Scholar
  10. 10.
    Bychkov, V.Yu., Tyulenin, Yu.P., Slinko, M.M., and Korchak, V.N., Catal. Lett., 2007, vol. 119, nos. 3–4, p. 339.CrossRefGoogle Scholar
  11. 11.
    Gladky, A.Yu., Ermolaev, V.K., and Parmon, V.N., Catal. Lett., 2001, vol. 77, nos. 1–2, p. 103.CrossRefGoogle Scholar
  12. 12.
    Gladky, A.Yu., Ustugov, V.V., Sorokin, A.M., Nizovskii, A.I., Parmon, V.N., and Bukhtiyarov, V.I., Chem. Eng. J., 2005, vol. 107, nos. 1–3, p. 33.CrossRefGoogle Scholar
  13. 13.
    Gladky, A.Yu., Kaichev, V.V., Ermolaev, V.K., Bukhtiyarov, V.I., and Parmon, V.N., Kinet. Catal., 2005, vol. 46, no. 2, p. 251.CrossRefGoogle Scholar
  14. 14.
    Slinko, M.M., Korchak, V.N., and Peskov, N.V., Appl. Catal., A, 2006, vol. 303, no. 2, p. 258.CrossRefGoogle Scholar
  15. 15.
    Ren, X.-B., Li, H.-Y., and Guo, X.-Y., Surf. Sci., 2008, vol. 602, no. 1, p. 300.CrossRefGoogle Scholar
  16. 16.
    Ren, X.-B. and Guo, X.-Y., Surf. Rev. Lett., 2008, vol. 15, no. 6, p. 769.CrossRefGoogle Scholar
  17. 17.
    Ren, X., Li, H., and Guo, X., Acta Phys. Chim. Sin., 2008, vol. 24, no. 2, p. 197.CrossRefGoogle Scholar
  18. 18.
    Ren, X.-B., Li, H.-Y., and Guo, X.-Y., Surf. Sci., 2009, vol. 603, no. 4, p. 606.CrossRefGoogle Scholar
  19. 19.
    Temel, B., Meskine, H., Reuter, K., Scheffler, M., and Metiu, H., J. Chem. Phys., 2007, vol. 126, no. 20, p. 204711.CrossRefGoogle Scholar
  20. 20.
    Shen, S., Li, C., and Yu, C., Stud. Surf. Sci. Catal., 1998, vol. 119, p. 765.CrossRefGoogle Scholar
  21. 21.
    Li, C., Yu, C., and Shen, S., Catal. Lett., 2001, vol. 75, nos. 3–4, p. 183.CrossRefGoogle Scholar
  22. 22.
    Yan, Q.G., Weng, W.Z., Wan, H.L., Toghiani, H., Toghiani, R.K., and Pittman, C.U., Jr, Appl. Catal., A, 2003, vol. 239, nos. 1–2, p. 43.Google Scholar
  23. 23.
    Liu, Z.-W., Jun, K.-W., Roh, H.-S., Baek, S.-C., and Park, S.-E., J. Mol. Catal. A: Chem., 2002, vol. 189, no. 2, p. 283.CrossRefGoogle Scholar
  24. 24.
    Jun, J.H., Lim, T.H., Nam, S.-W., Hong, S.-A., and Yoon, K.J., Appl. Catal., A, 2006, vol. 312, p. 27.CrossRefGoogle Scholar
  25. 25.
    Efstathiou, A.M., Kladi, A., Tsipouriari, V.A., and Verykios, X.E., J. Catal., 1996, vol. 158, no. 1, p. 64.CrossRefGoogle Scholar
  26. 26.
    Hu, Y.H. and Ruckenstein, E., Catal. Lett., 1995, vol. 34, nos. 1–2, p. 41.CrossRefGoogle Scholar
  27. 27.
    Grabke, H.J., Metall. Trans. A, 1970, vol. 1, p. 2972.Google Scholar
  28. 28.
    Campbell, R.A., Szanyi, J., Lenz, P., and Goodman, D.W., Catal. Lett., 1993, vol. 17, nos. 1–2, p. 39.CrossRefGoogle Scholar
  29. 29.
    Choudhary, T.V. and Goodman, D.W., J. Mol. Catal. A: Chem., 2000, vol. 163, nos. 1–2, p. 9.CrossRefGoogle Scholar
  30. 30.
    Au, C.-T., Liao, M.-S., and Ng, C.-F., J. Phys. Chem. A, 1998, vol. 102, no. 22, p. 3959.CrossRefGoogle Scholar
  31. 31.
    Yang, W.-S., Xiang, H.-W., Li, Y.-W., and Sun, Y.-H., Catal. Today, 2000, vol. 61, nos. 1–4, p. 237.CrossRefGoogle Scholar
  32. 32.
    Olivera, P.P., Patrito, E.M., and Sellers, H., Surf. Sci., 1995, vol. 327, no. 3, p. 330.CrossRefGoogle Scholar
  33. 33.
    Chen, D., Lodeng, R., Anundskas, A., Olsvik, O., and Holmen, A., Chem. Eng. Sci., 2001, vol. 56, no. 4, p. 1371.CrossRefGoogle Scholar
  34. 34.
    Hei, M.J., Chen, H.B., Yi, J., Lin, Y.J., Lin, Y.Z., Wei, G., and Liao, D.W., Surf. Sci., 1998, vol. 417, no. 1, p. 82.CrossRefGoogle Scholar
  35. 35.
    Shustorovich, E. and Sellers, H., Surf. Sci. Rep., 1998, vol. 31, nos. 1–3, p. 1.CrossRefGoogle Scholar
  36. 36.
    Bell, A.T. and Shustorovich, E., J. Catal., 1990, vol. 121, no. 1, p. 1.CrossRefGoogle Scholar
  37. 37.
    Chen, D., Lodeng, R., Omdahl, K., Anundskas, A., Olsvik, O., and Holmen, A., Stud. Surf. Sci. Catal., 2001, vol. 139, p. 93.CrossRefGoogle Scholar
  38. 38.
    Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equation), Izhevsk: NITs RKhD, 2001.Google Scholar
  39. 39.
    Holodniok, M., Klic, A., Kubicek, M., and Marek, M., Metody analyzy nelinearnich dynamickych modelu, Prague: Academia, 1986.Google Scholar
  40. 40.
    Andronov, A.A., Leontovich, E.A., Gordon, I.I., and Maier, A.G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti (Theory of Bifurcations of Dynamic Systems on a Plane), Moscow: Nauka, 1967.Google Scholar
  41. 41.
    Shil’nikov, L.P., Shil’nikov, A.L., Turaev, D.V., and Chua, L., Metody kachestvennoi teorii v nelineinoi dinamike (Methods of Qualitative Theory in Nonlinear Dynamics), Izhevsk: NITs RKhD, 2009, vol. 2.Google Scholar
  42. 42.
    Hairer, E., Norsett, S.P., and Wanner, G., Solving Ordinary Differential Equations: Nonstiff Problems, Berlin: Springer, 1987.Google Scholar
  43. 43.
    Chumakov, G.A. and Chumakova, N.A., Selçuk J. Appl. Math., 2001, vol. 2, p. 27.Google Scholar
  44. 44.
    Chumakov, G.A. and Chumakova, N.A., Chem. Eng. J., 2003, vol. 91, p. 151.CrossRefGoogle Scholar
  45. 45.
    Gorodetskii, V.V., Elokhin, V.I., Bakker, J.W., and Nieuwenhuys, B.E., Catal. Today, 2005, vol. 105, p. 183.CrossRefGoogle Scholar
  46. 46.
    Lashina, E.A., Chumakova, N.A., Chumakov, G.A., and Boronin, A.I., Chem. Eng. J., 2009, vol. 154, p. 82.CrossRefGoogle Scholar
  47. 47.
    Jin, R., Chen, Y., Li, W., Cui, W., Ji, Y., Yu, C., and Jiang, Y., Appl. Catal., A, 2000, vol. 201, p. 71.CrossRefGoogle Scholar
  48. 48.
    Zhang, X., Lee, C.S.M., Hayward, D.O., and Mingos, D.M.P., Catal. Today, 2005, vol. 105, p. 283.CrossRefGoogle Scholar
  49. 49.
    Hamza, A.V. and Madix, R.J., Surf. Sci., 1987, vol. 179, p. 25.CrossRefGoogle Scholar
  50. 50.
    Jiang, X. and Goodman, D.W., Catal. Lett., 1990, vol. 4, p. 173.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. A. Lashina
    • 1
    • 2
  • V. V. Kaichev
    • 1
    • 2
    Email author
  • N. A. Chumakova
    • 1
    • 2
  • V. V. Ustyugov
    • 1
  • G. A. Chumakov
    • 1
    • 3
  • V. I. Bukhtiyarov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations