Kinetics and Catalysis

, Volume 52, Issue 1, pp 98–103

Electrical conductivity of magnesium oxide as a catalyst for radical chain hydrocarbon pyrolysis reactions

Article

Abstract

The electrical conductivity of polycrystalline MgO between 350 and 750°C is determined by the transport of surface electronic and hole defects and depends on the applied voltage. Near 620°C at low applied voltages, the conductivity decreases by 1–2 orders of magnitude in a narrow temperature range (ΔT = 75°C), and this is accompanied by a change of the sign of the surface charge carriers. The “ignition” of the catalytic activity of magnesium oxide in free radical generation in radical chain hydrocarbon pyrolysis is observed in the same temperature range. It is assumed that the change of the sign of the charge carriers is due to the existence of an isoelectric temperature Ti and that, at T > Ti, OO· defects come out to the magnesium oxide surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidation Reactions of Methane), Moscow: Nauka, 1998.Google Scholar
  2. 2.
    Vasil’eva, N.A. and Buyanov, R.A., Kinet. Katal., 1993, vol. 34, p. 835.Google Scholar
  3. 3.
    Vasil’eva, N.A. and Buyanov, R.A., Khim. Interes. Ust. Razv., 2004, vol. 12, p. 661.Google Scholar
  4. 4.
    Vasil’eva, N.A., Paukshtis, E.A., and Buyanov, R.A., Izv. Sib. Otd. Akad. Nauk, Ser. Khim. Nauk, 1983, vol. 1, no. 2, p. 97.Google Scholar
  5. 5.
    Vasil’eva, N.A., Buyanov, R.A., and Zamaraev, K.I., Khim. Fiz., 1984, vol. 3, p. 688.Google Scholar
  6. 6.
    Vasil’eva, N.A., Ermolaev, V.K., and Kuz’mitskaya, S.Yu., Kinet. Katal., 1999, vol. 40, p. 111 [Kinet. Catal. (Engl. Transl.), vol. 40, p. 100].Google Scholar
  7. 7.
    Nada, R., Hess, A.C., and Pisani, C., Surf. Sci., 1995, vol. 336, p. 353.CrossRefGoogle Scholar
  8. 8.
    Sempolinski, D.R. and Kingery, W.D., J. Am. Ceram. Soc., 1980, vol. 63, p. 664.CrossRefGoogle Scholar
  9. 9.
    Sempolinski, D.R., Kingery, W.D., and Tuller, H.L., J. Am. Ceram. Soc., 1980, vol. 63, p. 669.CrossRefGoogle Scholar
  10. 10.
    Duclot, M. and Deportes, C., J. Solid State Chem., 1980, vol. 31, p. 377.CrossRefGoogle Scholar
  11. 11.
    Catlow, C.R.A., Computer Modeling in Inorganic Crystallography, New York: Academic, 1997.Google Scholar
  12. 12.
    Kathrein, H. and Freund, F., J. Phys. Chem. Solids, 1983, vol. 44, p. 177.CrossRefGoogle Scholar
  13. 13.
    Freund, F., J. Geodyn., 2003, vol. 35, p. 353.CrossRefGoogle Scholar
  14. 14.
    Valentin, C.D., Ricci, D., Pacchioni, G., Chiesa, M., Paganini, M.C., and Giamello, E., Surf. Sci., 2002, vol. 521, p. 104.CrossRefGoogle Scholar
  15. 15.
    Pacchioni, G., Solid State Sci., 2000, vol. 2, p. 161.CrossRefGoogle Scholar
  16. 16.
    Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow: Akad. Nauk SSSR, 1945.Google Scholar
  17. 17.
    Kliewer, K.L. and Koehler, K.S., Phys. Rev. A: At., Mol., Opt. Phys., 1965, vol. 140, p. 1226.Google Scholar
  18. 18.
    Maier, J., Prog. Solid State Chem., 1995, vol. 23, p. 171.CrossRefGoogle Scholar
  19. 19.
    Uvarov, N.F., Elektrokhimiya, 2007, vol. 43, p. 388 [Russ. J. Elektrochem. (Engl. Transl.), vol. 43, p. 368].Google Scholar
  20. 20.
    Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Sib. Otd. Akad. Nauk, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations