Kinetics and Catalysis

, Volume 51, Issue 1, pp 139–142 | Cite as

Preparation and characterization of modified aluminum oxide catalysts

  • R. A. ZotovEmail author
  • V. V. Molchanov
  • V. V. Goidin
  • E. M. Moroz
  • A. M. Volodin


The formation of individual and modified high-purity aluminum oxides (γ-Al2O3) prepared from aluminum alcoholates was studied. In the study of the hydrolysis of aluminum alcoholates and modified (Zr, Ti, and Si) aluminum alcoholates, it was found that an increase in the chain length of the alkoxy group and an increase in the aging temperature or aging time in mother liquor resulted in a decrease in the concentration of an amorphous phase, an increase in the concentration of a pseudoboehmite phase, and an improvement in its crystal structure. Hydrolysis in alkaline (a 0.5 wt % solution of ammonia) or neutral solutions made it possible to obtain samples with an almost 100% pseudoboehmite content. At the same time, the samples prepared by hydrolysis in an acidic solution (a 0.1 M solution of HCl) contained a considerable amount of an amorphous phase. It was found that the specific rate of dehydration of n-butanol on the modified aluminum oxide samples linearly decreased with the concentration of donor sites and linearly increased with the concentration of acceptor sites, whose concentration was measured using the spin probe method.


Acid Site Acceptor Site High Purity Alumina Tita Nium Chloride Aluminum Alkoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montoya, A., del Angela, P., and Viveros, T., J. Mater. Chem., 2001, vol. 11, p. 944.CrossRefGoogle Scholar
  2. 2.
    Inamura, S., Miyamoto, H., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci., 1994, vol. 281, p. 4913.CrossRefGoogle Scholar
  3. 3.
    Miller, B. and Ko, E.I., Catal. Today, 1997, vol. 35, p. 269.CrossRefGoogle Scholar
  4. 4.
    Kim, Y., Kim, C., Kim, P., and Yi, J., J. Non-Cryst. Solids, 2005, vol. 351, p. 550.CrossRefGoogle Scholar
  5. 5.
    US Patent 3640093, 1972.Google Scholar
  6. 6.
    Stranick, M.A., Houalla, M., and Hercules, D., J. Catal., 1987, vol. 106, p. 362.CrossRefGoogle Scholar
  7. 7.
    Turevskaya, E.P., Yanovskaya, M.I., and Turova, N.Ya., Izv. Akad. Nauk, Neorg. Mater., 2000, vol. 3, no. 36, p. 330.Google Scholar
  8. 8.
    Turevskaya, E.P., Turova, N.Ya., and Novoselova, A.V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1980, vol. 10, no. 16, p. 1805.Google Scholar
  9. 9.
    Turova, N.Ya. and Yanovskaya, M.I., Izv. Akad. Nauk SSSR, Neorg. Mater., 1983, vol. 19, no. 15, p. 693.Google Scholar
  10. 10.
    Fedotov, M.A., Molchanov, V.V., Zotov, R.A., and Tuzikov, F.V., Zh. Neorg. Khim., 2008, vol. 53, no. 10, p. 1735 [Russ. J. Inorg. Chem. (Engl. Transl.), vol. 53, no. 10, p. 1621].Google Scholar
  11. 11.
    Flockhart, B.D., Scott, J.A.N., and Pink, R.C., J. Chem. Soc., Faraday Trans., 1966, vol. 62, p. 730.CrossRefGoogle Scholar
  12. 12.
    Flockhart, B.D., Leith, I.R., and Pink, R.C., J. Chem. Soc., Faraday Trans., 1970, vol. 66, p. 469.CrossRefGoogle Scholar
  13. 13.
    Volodin, A.M., Bolshov, V.A., and Konovalova, T.A., Mol. Eng., 1994, vol. 4, p. 201.CrossRefGoogle Scholar
  14. 14.
    Bedilo, A.F., Ivanova, A.S., Pahomov, N.A., and Volodin, J. Mol. Catal. A: Chem., 2000, vol. 158, p. 409.CrossRefGoogle Scholar
  15. 15.
    Bedilo, A.F. and Volodin, A.M., Kinet. Katal., 2009, vol. 50, no. 2, p. 332.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • R. A. Zotov
    • 1
    Email author
  • V. V. Molchanov
    • 1
  • V. V. Goidin
    • 1
  • E. M. Moroz
    • 1
  • A. M. Volodin
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations