Kinetics and Catalysis

, Volume 50, Issue 3, pp 444–449 | Cite as

Deactivation of a Zn/TiO2 catalyst in the course of methanol steam reforming in a microchannel reactor

  • A. G. GribovskiiEmail author
  • L. L. Makarshin
  • D. V. Andreev
  • S. V. Korotaev
  • V. I. Zaikovskii
  • V. N. Parmon


The service life tests of a Zn/TiO2 catalyst deposited on the microchannel plates of copper foam, nickel foam, and corrugated brass foil in the process of methanol steam reforming demonstrated that the catalyst stability and operation time depend on microchannel plate material. The rate of catalyst deactivation correlated with the thermal conductivity of the microchannel plate material. It was found that catalyst deactivation resulted from the decomposition of zinc titanates, which are active components, and it was accompanied by the appearance of a zinc oxide phase. The best results in the service life tests were obtained with the microchannel plates of copper foam. A microchannel reactor containing 16 copper plates continuously operated at 400°C for 150 h; in this case, the conversion of methanol decreased by 8%. The subsequent microreactor operation for 500 h caused a decrease in the methanol conversion by 26%. It was found that the loss of the catalyst activity was a reversible process, and the activity can be restored by annealing in air.


Hydrogen Production Catalyst Deactivation Metal Foam Nickel Foam Methanol Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Löffler, D.G., McDermott, S.D., and Renn, C.N., J. Power Sources, 2005, vol. 114, p. 15.CrossRefGoogle Scholar
  2. 2.
    Shishido, T., Yamamotob, Y., Morioka, H., Takaki, K., and Takehira, K., Appl. Catal., A, 2004, vol. 263, p. 249.CrossRefGoogle Scholar
  3. 3.
    Breen, J.B. and Ross, J.R.H., Catal. Today, 1999, vol. 511, p. 521.CrossRefGoogle Scholar
  4. 4.
    Durga Kumari, V., Subrahmanyam, M., Ratnamala, A., Venugop, D., Srinivas, B., Phanikrishna Sharma, M.V., Madhavendra, S.S., Bikshapathi, B., Venkateswarlu, K., Krishnudu, T., Prasad, K.B.S., and Raghavan, K.V., Catal. Commun., 2002, vol. 3, p. 417.CrossRefGoogle Scholar
  5. 5.
    Pinzari, F., Patrono, P., and Costantino, U., Catal. Commun., 2006, vol. 7, p. 696.CrossRefGoogle Scholar
  6. 6.
    Delsman, E.R., Microstructured Reactors for a Portable Hydrogen Production Unit, Eindhoven: Technische Universiteit Eindhoven, 2005.Google Scholar
  7. 7.
    Makarshin, L.L., Andreev, D.V., Gribovskii, A.G., Dutov, P.M., Khantakov, R.M., and Parmon, V.N., Kinet. Katal., 2007, vol. 48, no. 5, p. 816 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 5, p. 765].CrossRefGoogle Scholar
  8. 8.
    Makarshin, L.L., Andreev, D.V., Gribovskiy, A.G., and Parmon, V.N., Int. J. Hydrogen Energy, 2007, vol. 32, 2007, vol. 32, p. 3864.CrossRefGoogle Scholar
  9. 9.
    Untea, I., Dansila, M., Vasile, E., and Velsu, M., Powder Technol., 2009, vol. 191, p. 27.CrossRefGoogle Scholar
  10. 10.
    Moretti, E., Storaro, L., Talon, A., Patrono, P., Pinzari, F., Montanari, T., Ramis, G., and Lenarda, M., Appl. Catal., A, 2008, vol. 344, p. 165.CrossRefGoogle Scholar
  11. 11.
    Lew, S., Sarofim, A.F., and Flytzani-Stephanopoulos, M., Chem. Eng. Sci., 1992, vol. 47, p. 1421.CrossRefGoogle Scholar
  12. 12.
    Gribovskii, A.G., Makarshin, L.L., Andreev, D.V., Korotaev, S.V., Dutov, P.M., Khantakov, R.M., Reshetnikov, S.I., and Parmon, V.N., Kinet. Katal., 2009, vol. 50, no. 1, p. 15 [Kinet. Catal. (Engl. Transl.), vol. 50, no. 1, p. 11].CrossRefGoogle Scholar
  13. 13.
    Perry, R. and Green, D., Perry’s Chemical Engineering Handbook, New York: McGraw-Hill, 1997.Google Scholar
  14. 14.
    Yu, H., Chen, H., Pan, M., Tang, Y., Zeng, K., Peng, F., and Wang, H., Appl. Catal., A, 2007, vol. 327, p. 106.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. G. Gribovskii
    • 1
    Email author
  • L. L. Makarshin
    • 1
  • D. V. Andreev
    • 1
  • S. V. Korotaev
    • 1
  • V. I. Zaikovskii
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations