Advertisement

Kinetics and Catalysis

, Volume 50, Issue 2, pp 241–246 | Cite as

Effect of the cerium content on the activity of Cu-Ce-Al-O catalysts in the methanol steam reforming reaction in a flow reactor

  • D. V. AndreevEmail author
  • S. V. Korotaev
  • R. M. Khantakov
  • L. L. Makarshin
  • A. G. Gribovskii
  • L. P. Davydova
  • V. N. Parmon
Article

Abstract

The Cu18.5Ce x Al81.5 − x (where x = 2, 7.4, and 14) oxide catalysts were synthesized by coprecipitation and tested in the methanol steam reforming reaction in an integral flow reactor at 270°C. It was found that the activity of the catalysts increased with the calcination temperature and catalysts with intermediate cerium contents exhibited the highest activity; these catalysts exhibited the greatest values of S BET and S Cu. The phase analysis demonstrated that copper in these samples occurred almost entirely as a CuO-CeO2 solid solution. The concentration of carbon monoxide at the reactor outlet decreased with the calcination temperature. For the most active sample with a cerium content of 7.4% calcinated at 700°C, the concentration of CO reached a minimum of no higher than 0.3%.

Keywords

Cerium Copper Metal Methanol Conversion Reactor Outlet Cerium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuel Cell Handbook, Morgantown, W.Va.: US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2000, 5th ed.Google Scholar
  2. 2.
    Agrell, J., Boutonnet, M., Melian-Cabrera, I., and Fierro, J.L.G., Appl. Catal., A, 2003, vol. 253, no. 1, p. 201.CrossRefGoogle Scholar
  3. 3.
    Shen, J.P. and Song, C., Catal. Today, 2002, vol. 77, nos. 1–2, p. 89.CrossRefGoogle Scholar
  4. 4.
    Idem, R.O. and Bakhshi, N.N., Ind. Eng. Chem. Res., 1994, vol. 33, no. 9, p. 2056.CrossRefGoogle Scholar
  5. 5.
    Chin, Y.H., Dagle, R., Hu, J., Dohnalkova, A.C., and Wang, Y., Catal. Today, 2002, vol. 77, nos. 1–2, p. 79.CrossRefGoogle Scholar
  6. 6.
    Cao, C., Xia, G., Holladay, J., Jones, E., and Wang, Y., Appl. Catal., A, 2004, vol. 262, no. 1, p. 19.CrossRefGoogle Scholar
  7. 7.
    Idem, R.O. and Bakhshi, N.N., Chem. Eng. Sci., 1996, vol. 51, no. 14, p. 3697.CrossRefGoogle Scholar
  8. 8.
    Ritzkopf, I., Vukojevic, S., Weidenthaler, C., Grunwaldt, J.-D., and Schuth, F., Appl. Catal., A, 2006, vol. 302, no. 2, p. 215.CrossRefGoogle Scholar
  9. 9.
    Li, Y., Fu, Q., and Flytzani-Stephanopoulos, M., Appl. Catal., B, 2000, vol. 27, no. 3, p. 179.CrossRefGoogle Scholar
  10. 10.
    Wang, S.-P., Wang, X.-Y., Huang, J., Zhang, S.-M., Wang, S.-R., and Wu, S.-H., Catal. Commun., 2007, vol. 8, no. 3, p. 231.CrossRefGoogle Scholar
  11. 11.
    Patel, S. and Pant, K.K., J. Power Sources, 2006, vol. 159, no. 1, p. 139.CrossRefGoogle Scholar
  12. 12.
    Mastalir, A., Frank, B., Szizybalski, A., Soerijanto, H., Deshpande, A., Niederberger, M., Schomacker, R., Schlogl, R., and Ressler, T., J. Catal., 2005, vol. 230, no. 2, p. 464.CrossRefGoogle Scholar
  13. 13.
    Makarshin, L.L., Andreev, D.V., Gribovskiy, A.G., and Parmon, V.N., Int. J. Hydrogen Energy, 2007, vol. 32, no. 16, p. 3864.CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Hayakawa, T., Suzuki, K., Hamakawa, S., Tsunoda, T., Ishii, T., and Kumagai, M., Appl. Catal., A, 2002, vol. 223, nos. 1–2, p. 137.Google Scholar
  15. 15.
    Lang’s Handbook of Chemistry, Dean, J.A., Ed., New York: McGraw-Hill, 1985, p. 3.Google Scholar
  16. 16.
    Fernández-Garcia, M., Gómez Rebollo, E., Guerrero Ruiz, A., Conesa, J.C., and Soria, J., J. Catal., 1997, vol. 172, no. 1, p. 146.CrossRefGoogle Scholar
  17. 17.
    Zhang, X. and Shi, P., J. Mol. Catal. A: Chem., 2003, vol. 194, nos. 1–2, p. 99.CrossRefGoogle Scholar
  18. 18.
    Men, Y., Gnaser, H., Zapf, R., Hessel, V., Ziegler, C., and Kolb, G., Appl. Catal., A, 2004, vol. 277, nos. 1–2, p. 83.Google Scholar
  19. 19.
    Baronskaya, N.A., Yurieva, T.M., Minyukova, T.P., Demeshkina, M.P., Khassin, A.A., and Sipatrov, A.G., Catal. Today, 2005, vol. 105, nos. 3–4, p. 697.CrossRefGoogle Scholar
  20. 20.
    Agrell, J., Birgersson, H., and Boutonnet, M., J. Power Sources, 2002, vol. 106, nos. 1–2, p. 249.CrossRefGoogle Scholar
  21. 21.
    Geissler, K., Newson, E., Vogel, F., Truong, T.-B., Hottinger, P., and Wokaun, A., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 289.CrossRefGoogle Scholar
  22. 22.
    Purnama, H., Ressler, T., Jentoft, R.E., Soerijanto, H., Schlogl, R., and Schomacker, R., Appl. Catal., A, 2004, vol. 259, no. 1, p. 83.CrossRefGoogle Scholar
  23. 23.
    Peppley, B.A., Amphett, J.C., Kearns, L.M., and Mann, R.F., Appl. Catal., A, 1999, vol. 179, nos. 1–2, p. 31.Google Scholar
  24. 24.
    Lee, J.K., Ko, J.B., and Kim, D.H., Appl. Catal., A, 2004, vol. 278, no. 1, p. 25.CrossRefGoogle Scholar
  25. 25.
    Galvita, V., Semin, G.L., Belyaev, V.D., Yurieva, T.M., and Sobyanin, V.A., Appl. Catal., A, 2001, vol. 216, nos. 1–2, p. 85.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • D. V. Andreev
    • 1
    Email author
  • S. V. Korotaev
    • 1
  • R. M. Khantakov
    • 1
  • L. L. Makarshin
    • 1
  • A. G. Gribovskii
    • 1
  • L. P. Davydova
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations