Advertisement

Kinetics and Catalysis

, Volume 50, Issue 1, pp 11–17 | Cite as

Efficiency of Zn/TiO2 catalyst operation in a microchannel reactor in methanol steam reforming

  • A. G. Gribovskii
  • L. L. Makarshin
  • D. V. Andreev
  • S. V. Korotaev
  • P. M. Dutov
  • R. M. Khantakov
  • S. I. Reshetnikov
  • V. N. Parmon
Fifty Years of the Boreskov Institute of Catalysis

Abstract

The activity of a Zn/TiO2 catalyst deposited on metal microchannel plates in methanol steam reforming was studied. The catalyst exhibited maximum activity upon deposition on microchannel plates made of copper foam. In this case, the specific hydrogen production of a microreactor at 450°C was 78.6 l (g Cat)−1 h−1. The catalysts deposited on a microchannel plate of nickel foam and on corrugated brass foil exhibited lower activity because of the lower efficiency of heat transfer to the reaction zone. A correlation between the thermal conductivity of the microchannel plate material and the activity of the catalyst was observed in the following order: copper, brass, and nickel. The kinetic parameters of the process of methanol steam reforming in a microreactor were calculated with the use of a plug-flow reactor model. In this case, the calculated formal activation energy of 132 kJ/mol was independent of the microchannel plate material. A comparison of the equilibrium concentrations of reaction products at the reactor outlet, which were calculated from thermodynamic data, with the experimental data demonstrated that methanol steam reforming at a temperature higher than 400°C occurred in the nonequilibrium region. The concentration of carbon monoxide at the microreactor outlet was lower than 1 mol %, which is lower than the equilibrium concentration by one order of magnitude. This effect was attributed to the suppression of the reversed water gas shift reaction on the catalyst.

Keywords

Foam Hydrogen Production Nickel Foam Methanol Conversion Microchannel Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrell, J., Boutonnet, M., Melian-Cabrera, I., and Fierro, J., Appl. Catal., A, 2003, vol. 253, p. 201.CrossRefGoogle Scholar
  2. 2.
    Agrell, J., Boutonnet, M., and Fierro, J., Appl. Catal., A, 2003, vol. 253, p. 213.CrossRefGoogle Scholar
  3. 3.
    Fukahori, S., Kitaoka, T., Tomoda, A., Suzuki, R., and Wariishi, H., Appl. Catal., A, 2006, vol. 300, p. 155.CrossRefGoogle Scholar
  4. 4.
    Yao, C., Wang, L., Liu, Y., Wu, G., Cao, Y., Dai, W., He, H., and Fan, K., Appl. Catal., A, 2006, vol. 297, p. 151.CrossRefGoogle Scholar
  5. 5.
    Takezawa, N., Kobayashi, H., Hirose, A., Shimokawabe, M., and Takahashi, K., Appl. Catal., 1982, vol. 4, p. 127.CrossRefGoogle Scholar
  6. 6.
    Zhang, X. and Shi, P., J. Mol. Catal. A: Chem., 2003, vol. 194, p. 99.CrossRefGoogle Scholar
  7. 7.
    Breen, J. and Ross, J., Catal. Today, 1999, vol. 51, p. 521.CrossRefGoogle Scholar
  8. 8.
    Breen, J., Meunier, F., and Ross, J., Chem. Commun., 1999, p. 2247.Google Scholar
  9. 9.
    Iwasa, N., Masuda, S., Ogawa, N., and Takezawa, N., Appl. Catal., A, 1995, vol. 125, p. 145.CrossRefGoogle Scholar
  10. 10.
    Pinzari, F., Patrono, P., and Costantino, U., Catal. Commun., 2006, no. 7, p. 696.Google Scholar
  11. 11.
    Gribovskii, A.G., Makarshin, L.L., Andreev, D.V., Korotaev, S.V., Zaikovskii, V.I., and Parmon, V.N., Kinet. Katal. (in press).Google Scholar
  12. 12.
    Andreev, D.V., Gribovskii, A.G., Korotaev, S.V., Makarshin, L.L., and Parmon, V.N., 2 Mezhdunarodnyi simpozium po vodorodnoi energetike (2nd Int. Symp. on Hydrogen Energy), Moscow, 2007, p. 103.Google Scholar
  13. 13.
    Karim, A., Bravo, J., and Datye, A., Appl. Catal., A, 2005, vol. 282, p. 101.CrossRefGoogle Scholar
  14. 14.
    Idem, R. and Bakhshi, N., Chem. Eng. Sci., 1996, vol. 51, p. 3697.CrossRefGoogle Scholar
  15. 15.
    Agarwal, V., Patel, S., and Pant, K., Appl. Catal., A, 2005, vol. 279, p. 155.CrossRefGoogle Scholar
  16. 16.
    Makarshin, L.L., Andreev, D.V., Gribovskii, A.G., Dutov, P.M., Khantakov, R.M., and Parmon, V.N., Kinet. Katal., 2007, vol. 48, no. 5, p. 816 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 5, p. 765].CrossRefGoogle Scholar
  17. 17.
    Safonov, M.S., Kriterii termodinamicheskogo sovershenstva tekhnologicheskikh sistem (Thermodynamic Perfection Criteria for Technological Systems), Moscow: Mosk. Gos. Univ., 1998.Google Scholar
  18. 18.
    Peppley, B., Amphlett, J., Kearns, L., and Mann, R., Appl. Catal., A, 1999, vol. 179, p. 31.CrossRefGoogle Scholar
  19. 19.
    Yablonskii, G.S., in Khimicheskaya i biologicheskaya kinetika (Chemical and Biological Kinetics), Emanuel, N.M., Berezin, I.V., and Varfolomeev, S.D., Eds., Moscow: Mosk. Gos. Univ., 1983, ch. 1.Google Scholar
  20. 20.
    Froment, G. and Bichoff, K., Chemical Reactor Analysis and Design, New York: Wiley, 1979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. G. Gribovskii
    • 1
  • L. L. Makarshin
    • 1
  • D. V. Andreev
    • 1
  • S. V. Korotaev
    • 1
  • P. M. Dutov
    • 2
  • R. M. Khantakov
    • 2
  • S. I. Reshetnikov
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations