Kinetics and Catalysis

, Volume 49, Issue 5, pp 708–719 | Cite as

Texture and adsorptive properties of microporous amorphous carbon materials prepared by the chemical activation of carbonized high-ash biomass

  • P. M. Eletskii
  • V. A. YakovlevEmail author
  • V. B. Fenelonov
  • V. N. Parmon


Samples of microporous amorphous carbon materials with calculated BET specific surface areas of up to 3500 m2/g, pore volumes of up to 3.0 cm3/g, and micropore volumes of up to 1.9 cm3/g were prepared using the chemical activation of rice hulls carbonized in a fluidized-bed reactor with a copper-chromium catalyst for deep oxidation. The effects of various activation parameters (temperature, activating agents, etc.) were studied, and optimum parameters were chosen. The resulting materials exhibited sorption capacities of up to 6.3 and 41 wt % for hydrogen at liquid nitrogen temperature and 50 atm and for methane at 0°C and 60 atm, respectively. Because of this, they are promising for use in the purification, storage, and transportation of fuel gases. Moreover, some aspects of the mechanism of the interaction of an activating agent with a carbon-containing precursor are proposed.


Carbon Material Texture Characteristic Wheat Straw Total Pore Volume Micropore Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, R.C., Donnet, J.-B., and Stoeckli, F., Active Carbon, New York: Marcel Dekker, 1988.Google Scholar
  2. 2.
    Von Kienle, H. and Bäder, E., Aktivkohle und ihre industrielle Anwendung, Stuttgart: Enke, 1980.Google Scholar
  3. 3.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Inst. Kataliza, 1995.Google Scholar
  4. 4.
    Dubinin, M.M., Kadlets, O., Kataeva, L.I., and Onusaitis, B.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1988, no. 5, p. 977.Google Scholar
  5. 5.
    Kaneko, K., Ishii, C., Ruike, M., and Kuwabara, H., Carbon, 1992, vol. 30, no. 7, p. 1075.CrossRefGoogle Scholar
  6. 6.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1967.Google Scholar
  7. 7.
    US Patent 6030922, 2000.Google Scholar
  8. 8.
    Lillo-Rodenas, M.A., Cazorla-Amoros, D., and Linares-Solano, A., Carbon, 2003, vol. 41, no. 2, p. 267.CrossRefGoogle Scholar
  9. 9.
    Wu, M., Zha, Q., Qiu, J., Guo, Y., Shang, H., and Yuan, A., Carbon, 2004, vol. 42, no. 1, p. 210.CrossRefGoogle Scholar
  10. 10.
    Ehrburger, P., Addoun, A., Addoun, F., and Donnet, J.-B., Fuel, 1986, vol. 65, no. 10, p. 1447.CrossRefGoogle Scholar
  11. 11.
    Otowa, T., Nojima, Y., and Miyazaki, T., Carbon, 1997, vol. 35, no. 9, p. 1315.CrossRefGoogle Scholar
  12. 12.
    Yoshizawa, N., Maruyama, K., Yamada, Y., and Ishikawa, E., Fuel, 2002, vol. 81, no. 13, p. 1722.CrossRefGoogle Scholar
  13. 13.
    Marsh, H., Yan, D.S., O’Grandy, T.M., and Wennerberg, A., Carbon, 1984, vol. 22, no. 6, p. 603.CrossRefGoogle Scholar
  14. 14.
    Marsh, H. and Walker, P.L., Jr., Fuel Process. Technol., 1979, vol. 2, no. 1, p. 61.CrossRefGoogle Scholar
  15. 15.
    US Patent 3624004, 1971.Google Scholar
  16. 16.
    US Patent 4082694, 1978.Google Scholar
  17. 17.
    Marsh, H., Crawford, D., O’Grandy, T.M., and Wennerberg, A., Carbon, 1982, vol. 20, no. 5, p. 419.CrossRefGoogle Scholar
  18. 18.
    McKee, D.W., in Chemistry and Physics of Carbon, Walker, P.L., Jr. and Thrower, P.A., Eds., New York: Marcel Dekker, 1981, vol. 16, p. 1.Google Scholar
  19. 19.
    Halpin, M.K. and Jenkins, G.M., Proc. 3rd Int. Conf. on Industrial Carbon and Graphite, London, 1970, p. 53.Google Scholar
  20. 20.
    Cook, T.L., Komodromos, C., Quinn, D.F., and Ragan, S., in Carbon Materials for Advanced Technologies, Burchell, T.D., Ed., Amsterdam: Pergamon, 1999, p. 269.CrossRefGoogle Scholar
  21. 21.
    RF Patent 2206394, 2003.Google Scholar
  22. 22.
    US Patent 5416056, 1995.Google Scholar
  23. 23.
    Guo, Y., Yu, K., Wang, Z., and Xu, H., Carbon, 2003, vol. 41, no. 8, p. 1645.CrossRefGoogle Scholar
  24. 24.
    Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., and Xu, H., Dyes Pigm., 2003, vol. 56, no. 3, p. 219.CrossRefGoogle Scholar
  25. 25.
    Guo, Y., Yang, S., Yu, K., Zhao, J., Wang, Z., and Xu, H., Mater. Chem. Phys., 2002, vol. 74, no. 3, p. 320.CrossRefGoogle Scholar
  26. 26.
    Guo, J. and Lua, A.C., J. Colloid Interface Sci., 2002, no. 2, vol. 254, p. 227.CrossRefGoogle Scholar
  27. 27.
    Díaz-Terán, J., Nevskaia, D.M., Fierro, J.L.G., López-Peinado, A.J., and Jerez, A., Microporous Mesoporous Mater., 2003, vol. 60, nos. 1–3, p. 173.CrossRefGoogle Scholar
  28. 28.
    Oh, G.H. and Park, C.R., Fuel, 2002, vol. 81, no. 3, p. 327.CrossRefGoogle Scholar
  29. 29.
    US Patent 5710092, 1998.Google Scholar
  30. 30.
    Koz’mina, E.P., Ris i ego kachestvo (Rice and Its Quality), Moscow: Kolos, 1976.Google Scholar
  31. 31.
    Diagrammy plavkosti solevykh sistem. Spravochnik (Fusion Diagrams of Salt Systems: A Handbook) Posypaiko, V.I. and Alekseeva, V.A., Eds., Moscow: Metallurgiya, 1977, vol. 2, p. 21.Google Scholar
  32. 32.
    Yakovlev, V.A., Yeletsky, P.M., Lebedev, M.Yu., Ermakov, D.Yu., and Parmon, V.N., Proc. XVII Int. Conf. on Chemical Reactors, Athens, 2006, p. 290.Google Scholar
  33. 33.
    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Intercalation Compounds, and Carbon-Based Composites), Moscow: Aspekt Press, 1997.Google Scholar
  34. 34.
    Gordon, S. and McBride, B.J., NASA SP-273, NASA Lewis Research Center, 1971, p. 365.Google Scholar
  35. 35.
    Dillon, A.C. and Heben, M.J., Appl. Phys. A, 2001, vol. 72, no. 2, p. 133.CrossRefGoogle Scholar
  36. 36.
    Zhan, L., Li, K., Zhu, X., Lv, Ch., and Ling, L., Carbon, 2002, vol. 40, no. 3, p. 455.CrossRefGoogle Scholar
  37. 37.
    Texier-Mandoki, N., Dentzer, J., Piquero, T., Saadallah, S., David, P., and Vix-Guterl, C., Carbon, 2004, vol. 42, nos. 12–13, p. 2735.Google Scholar
  38. 38.
    Ströbel, R., Jörissen, L., Schliermann, T., Trapp, V., Schütz, W., Bohmhammel, K., Wolf, G., and Garche, J., J. Power Sources, 1999, vol. 84, no. 2, p. 221.CrossRefGoogle Scholar
  39. 39.
    Perrin, A., Celzard, A., Mareche, J.F., and Furdin, G., Carbon, 2004, vol. 42, no. 7, p. 1249.CrossRefGoogle Scholar
  40. 40.
    Biloe, S., Goetz, V., and Gillot, A., Carbon, 2002, vol. 40, no. 8, p. 1295.CrossRefGoogle Scholar
  41. 41.
    Menon, V.C. and Komarneni, S., J. Por. Mater., 1998, vol. 5, no. 1, p. 43.CrossRefGoogle Scholar
  42. 42.
    Kuvshinov, G.G., Zavarukhin, S.G., Mogil’nykh, Yu.I., and Kuvshinov, D.G., Khim. Prom-st., 1998, no. 5, p. 300.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • P. M. Eletskii
    • 1
  • V. A. Yakovlev
    • 1
    Email author
  • V. B. Fenelonov
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations