Advertisement

Kinetics and Catalysis

, Volume 48, Issue 5, pp 765–771 | Cite as

Effect of the microchannel plate design on the capacity of methanol steam reformers

  • L. L. Makarshin
  • D. V. Andreev
  • A. G. Gribovskii
  • P. M. Dutov
  • R. M. Khantakov
  • V. N. Parmon
Article

Abstract

Methanol steam reforming in microreactors is considered, and the effects of the microreactor geometry (cylindrical and rectangular) and microchannel plate (MCP) design on the hydrogen capacity of the microreactor is analyzed. The MCPs were made from aluminum foil, stainless steel, and foamed nickel by laser engraving, electrochemical etching, and pressing. The amount of catalyst powder (CuO/ZnO = 40: 60 mol/mol) fixed on one MCP was 0.04–2.5 g. The specific hydrogen capacity (U w) of the cylindrical microreactor is more than 3 times as high as the U w of the rectangular microreactor and is 6 times as high as the U w of a conventional fixed-bed catalytic reactor. This gain in hydrogen capacity is due to the more efficient use of the catalyst in the microreactors. The MCP design, which determines the residence time of the reactants in the microreactor, also has a significant effect on the capacity of the microreactor.

Keywords

Catalyst Layer Hydrogen Yield Channel Cross Section Methanol Conversion Microchannel Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuel Cell Handbook, US Department of Energy, 2000.Google Scholar
  2. 2.
    Matson, D.W., Martin, P.M., Tonkovich, A.Y., and Roberts, G.L., SPIE Conf. Proc., 1998, vol. 3514, p. 386.CrossRefGoogle Scholar
  3. 3.
    Wang, X., Zhu, J., Bau, H., and Gorte, R.J., Catal. Lett., 2001, vol. 77, no. 4, p. 173.CrossRefGoogle Scholar
  4. 4.
    Ouyang, X. and Besser, R.S., Catal. Today, 2003, vol. 84, p. 33.CrossRefGoogle Scholar
  5. 5.
    Lyubovsky, M. and Roychoudhury, S., Appl. Catal., B, 2004, vol. 54, p. 203.CrossRefGoogle Scholar
  6. 6.
    Agrell, J., Boutonnet, M., Melian-Cabrera, I., and Fierro, J., Appl. Catal., A, 2003, vol. 253, p. 201.CrossRefGoogle Scholar
  7. 7.
    Breen, J., Meunier, F., and Ross, J., Chem. Commun., 1999, p. 2247.Google Scholar
  8. 8.
    Perel’man, V.I., Kratkii spravochnik khimika (Chemist’s Concise Handbook), Moscow: Khimiya, 1964, p. 620.Google Scholar
  9. 9.
    RF Patent 61589, 2006.Google Scholar
  10. 10.
    Purnama, H., Ressler, T., Jentoft, R.E., Soerijanto, H., Schloegl, R., and Schomacker, R., Appl. Catal., A, 2004, vol. 259, p. 83.CrossRefGoogle Scholar
  11. 11.
    Makarshin, L.L., Andreev, D.V., Nikolaeva, O.I., and Parmon, V.N., 9 Mezhdunarodnyi seminar “Rossiiskie tekhnologii dlya industrii: Al’ternativnye istochniki energii i problemy energosberezheniya” (“Alternative Power Sources and Problems of Energy Saving,” 9th Int. Workshop on Russian Technologies for the Industry), St. Petersburg, 2005, p. 13.Google Scholar
  12. 12.
    Horny, C., Kiwi-Minsker, L., and Renken, A., Chem. Eng. J., 2004, vol. 101, p. 3.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • L. L. Makarshin
    • 1
  • D. V. Andreev
    • 1
  • A. G. Gribovskii
    • 1
  • P. M. Dutov
    • 2
  • R. M. Khantakov
    • 2
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations