Advertisement

Kinetics and Catalysis

, Volume 48, Issue 2, pp 245–254 | Cite as

The nature of autocatalysis in the Butlerov reaction

  • A. N. Simonov
  • O. P. Pestunova
  • L. G. Matvienko
  • V. N. Parmon
Article

Abstract

The effect of the nature of an initiator on the kinetics of formaldehyde consumption and on product composition in the Butlerov reaction was studied in a stirred flow reactor and a batch reactor. It was found that, under flow conditions, the kinetics and the product composition of this reaction are independent of the nature of the initiator. The reaction schemes proposed previously for an autocatalytic process mechanism based on the formation of glycolaldehyde from two formaldehyde molecules are incorrect. A correlation between the initiating activities of various monosaccharides and the rates of their conversion into an enediol form was found with the use of a batch reactor. Solid enediol complexes with Ca2+ ions were isolated for glucose, fructose, ribose, and sorbose; the initiating activity of these complexes was found to be much higher than the initiating activity of pure monosaccharides. A self-consistent mechanism was proposed for Butlerov reaction initiation. The formation of the enediol forms of monosaccharides followed by degradation to lower carbohydrates plays a key role in this mechanism. In turn, the initiating activity depends on the position of the carbonyl group in the monosaccharide molecule. The condensation reactions of glycolaldehyde, glyceraldehyde, and dihydroxyacetone with each other were studied. Based on data on the condensation products of lower carbohydrates, a scheme was proposed for the Butlerov reaction. According to this reaction scheme, C2 and C3 carbohydrates mainly undergo an aldol condensation reaction with formaldehyde, whereas the formation of higher monosaccharides occurs by the aldol condensation of lower C2–C3 carbohydrates with each other.

Keywords

Monosaccharide Aldose Calcium Hydroxide Dihydroxyacetone Lower Carbohydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butlerov, A.M., Compt. Rend., 1861, vol. 5, no. 145, p. 247.Google Scholar
  2. 2.
    Butlerov, A.M., Annalen, 1861, vol. 120, p. 295.Google Scholar
  3. 3.
    Vatsuro, K.V. and Mishchenko, G.L., Imennye reaktsii v organicheskoi khimii (Named Reactions in Organic Chemsitry), Moscow: Khimiya, 1976.Google Scholar
  4. 4.
    Khomenko, T.I., Sakharov, M.M., and Golovina, O.A., Usp. Khim., 1980, vol. 49, p. 1079.Google Scholar
  5. 5.
    Tambawala, H. and Weiss, A.H., J. Catal., 1972, vol. 26, p. 388.CrossRefGoogle Scholar
  6. 6.
    Lobry de Bruyn, C.A. and Alberda van Ekenstein, W.A., Recl. Trav. Chim. Pays-Bas, 1895, vol. 14, p. 195.Google Scholar
  7. 7.
    Lobry de Bruyn, C.A. and Alberda van Ekenstein, W.A., Recl. Trav. Chim. Pays-Bas, 1897, vol. 16, p. 256.Google Scholar
  8. 8.
    Angyal, S.J., in Glycoscience: Epimerization, Isomerization, and Rearrangement Reactions of Carbohydrates, Stütz, A.F., Ed., Berlin: Springer, 2001, p. 1.Google Scholar
  9. 9.
    Gleason, W.B. and Barker, R., Can. J. Chem., 1971, vol. 49, p. 1425.CrossRefGoogle Scholar
  10. 10.
    Gleason, W.B. and Barker, R., Can. J. Chem., 1971, vol. 49, p. 1433.CrossRefGoogle Scholar
  11. 11.
    Socha, R.F., Weiss, A.H., and Sakharov, M.M., J. Catal., 1981, vol. 67, p. 207.CrossRefGoogle Scholar
  12. 12.
    Mitsuno, T., Reports of the Faculty of Agriculture, Shizuka University, 1974, vol. 24, p. 19.Google Scholar
  13. 13.
    Harsch, G., Harsch, M., Bauer, H., and Voelter, W., Z. Naturforsch., A: Phys. Phys. Chem. Kosmophys., 1983, vol. 381, p. 1269.Google Scholar
  14. 14.
    Harsch, G., Bauer, H., and Voelter, W., Liebigs Ann. Chem., 1984, vol. 4, p. 623.Google Scholar
  15. 15.
    Breslow, R., Tetrahedron Lett., 1959, p. 22.Google Scholar
  16. 16.
    Kuzin, A.M., Zh. Obshch. Khim., 1935, vol. 5, p. 1373.Google Scholar
  17. 17.
    Ruckert, H., Pfeil, E., and Scharf, G., Ber. Dtsch. Chem. Ges., 1965, vol. 98, p. 2558.Google Scholar
  18. 18.
    Weiss, A.H., Seleznev, V.A., Sakharov, M.M., et al., J. Catal., 1977, vol. 48, p. 354.CrossRefGoogle Scholar
  19. 19.
    Ziemecki, S.B., LaPierre, R.B., Weiss, A.H., and Sakharov, M.M., J. Catal., 1977, vol. 50, p. 155.CrossRefGoogle Scholar
  20. 20.
    Fujino, K., Kobayashi, J., and Higughi, I., Nippon Kagaku Kaishi, 1972, vol. 12, p. 2292.Google Scholar
  21. 21.
    Fujino, K., Kobayashi, J., and Higughi, I., Nippon Kagaku Kaishi, 1972, vol. 12, p. 2287.Google Scholar
  22. 22.
    Uspenskaya, V.A., Krylov, O.V., and Sinyak, Yu.E., Kosm. Biol. Med., 1971, vol. 4, p. 9.Google Scholar
  23. 23.
    Pohloudek-Fabini, R. and Beyrich, T., Die organische Analyse, Leipzig: Geest & Portig, 1975.Google Scholar
  24. 24.
    Babko, A.K., Kolichestvennyi analiz (Quantitative Analysis), Moscow: Vysshaya Shkola, 1962.Google Scholar
  25. 25.
    Cherstiouk, O.V., Savinova, E.R., Kozhanova, L.A., and Parmon, V.N., React. Kinet. Catal. Lett., 2000, vol. 69, p. 331.CrossRefGoogle Scholar
  26. 26.
    Papa, L.J. and Turner, L.P., J. Chromatogr. Sci., 1972, vol. 10, p. 747.Google Scholar
  27. 27.
    Přibil, R., Komplexony v chemicke analyse, Prague: Československé Akademie Véd, 1957.Google Scholar
  28. 28.
    Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.J.P., J. Am. Chem. Soc., 1985, vol. 107, p. 3902.CrossRefGoogle Scholar
  29. 29.
    De Wit, G., Kieboom, A.P.G., and van Bekkum, H., Carbohydr. Res., 1979, vol. 74, p. 157.CrossRefGoogle Scholar
  30. 30.
    Khomenko, T.I. and Krylov, O.V., Kinet. Katal., 1974, vol. 15, p. 625.Google Scholar
  31. 31.
    Khomenko, T.I., Golovina, O.A., Sakharov, M.M., et al., J. Catal., 1976, vol. 45, p. 356.CrossRefGoogle Scholar
  32. 32.
    Niitsu, T., Ito, M.M., and Inoue, H., J. Chem. Eng. Jpn., 1992, vol. 25, p. 480.CrossRefGoogle Scholar
  33. 33.
    Quesnel, Y., Toupet, L., Duhamel, L., et al., Tetrahedron: Asymmetry, 1999, vol. 10, p. 1015.CrossRefGoogle Scholar
  34. 34.
    Simpura, I. and Nevalainen, V., Tetrahedron, 2003, vol. 59, p. 7535.CrossRefGoogle Scholar
  35. 35.
    Partridzh, R., Khomenko, T.I., Golovina, O.A., et al., Kinet. Katal., 1977, vol. 18, p. 557.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • A. N. Simonov
    • 1
  • O. P. Pestunova
    • 1
  • L. G. Matvienko
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations