Advertisement

Kinetics and Catalysis

, Volume 48, Issue 1, pp 103–115 | Cite as

Direct synthesis of nitrogen-containing filamentous carbon on a high-percentage Ni-Cu catalyst

  • G. N. Il’inich
  • A. V. Romanenko
  • R. I. Kvon
  • V. B. Fenelonov
  • V. I. Zaikovskii
  • A. V. Ishchenko
Article

Abstract

Nitrogen-containing catalytic filamentous carbon (N-CFC) of chemical composition NC18-NC104 has been synthesized by the decomposition of pyridine (Py) from gaseous mixtures with argon or H2 at 550–800°C on Ni/Al2O3 (Ni) and Ni-Cu/Al2O3 (Ni-Cu) high-percentage catalysts. The activity of the Ni-Cu catalyst in Py decomposition in mixtures with H2 is about one order of magnitude higher than its activity in Py/Ar mixtures (more than 70 g N-CFC per metal gram in 4.5 h at 750°C), which is interpreted as arising from the nickel-catalyzed hydrogenation of Py. The formation and growth of carbon fibers occurs through the decomposition of Py (from Ar/Py mixtures) and/or Py hydrodenitrification products (from H2/Py mixtures). The carbon material has been characterized by elemental analysis, low-temperature nitrogen adsorption, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). The effect of the noncatalytic reactions of Py and its transformation products on the composition and texture of N-CFC is discussed.

Keywords

Direct Synthesis Catalytic Decomposition Carbon Yield Noncatalytic Reaction Nickel Phthalocyanine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou Gang and Duan Wenhui, J. Nanosci. Nanotechnol., 2005, vol. 5, no. 9, p. 1421.CrossRefGoogle Scholar
  2. 2.
    Ewels, C.P. and Glerup, M., J. Nanosci. Nanotechnol., 2005, vol. 5, no. 9, p. 1345.CrossRefGoogle Scholar
  3. 3.
    Terrones, M., Jorio, A., Endo, M., Rao, A.M., Kim, Y.A., Hayashi, T., Terrones, H., Charlier, J.-C., Dresselhaus, G., and Dresselhaus, M.S., Mater. Today, 2004, vol. 7, no. 10, p. 30.CrossRefGoogle Scholar
  4. 4.
    Terrones, M., Ajayan, P.M., Banhart, F., Blase, X., Carroll, D.L., Charlier, J.C., Czerw, R., Foley, B., Grobert, N., Kamalakaran, R., Kohler-Redlich, P., Ruhle, M., Seeger, T., and Terrones, H., Appl. Phys. A: Mater. Sci. Process., 2002, vol. 74, no. 3, p. 355.CrossRefGoogle Scholar
  5. 5.
    Mangun, Ch.L., Benak, K.R., Economy, J., and Foster, K.L., Carbon, 2001, vol. 39, no. 12, p. 1809.CrossRefGoogle Scholar
  6. 6.
    Mangun, Ch.L., DeBarr, J.A., and Economy, J., Carbon, 2001, vol. 39, no. 11, p. 1689.CrossRefGoogle Scholar
  7. 7.
    Yang, Ch.-M. and Kaneko, K., Carbon, 2001, vol. 39, no. 7, p. 1075.CrossRefGoogle Scholar
  8. 8.
    Yang, Ch.M. and Kaneko, K., J. Colloid Interface Sci., 2002, vol. 255, no. 2, p. 236.CrossRefGoogle Scholar
  9. 9.
    Koh, M. and Nakajima, T., Carbon, 2000, vol. 38, no. 14, p. 1947.CrossRefGoogle Scholar
  10. 10.
    Raymundo-Pinero, E., Cazorla-Amoros, D., and Linares-Solano, A., Carbon, 2003, vol. 41, no. 10, p. 1925.CrossRefGoogle Scholar
  11. 11.
    Davini, P., Carbon, 2003, vol. 41, no. 2, p. 277.CrossRefGoogle Scholar
  12. 12.
    Muniz, J., Marban, G., and Fuertes, A.B., Appl. Catal., B, 2000, vol. 27, no. 1, p. 27.CrossRefGoogle Scholar
  13. 13.
    US Patent 5173466.Google Scholar
  14. 14.
    RF Patent 2147925.Google Scholar
  15. 15.
    Kvon, R.I., Il’inich, G.N., Chuvilin, A.L., and Likholobov, V.A., J. Mol. Catal. A: Chem., 2000, vol. 158, no. 1, p. 413.CrossRefGoogle Scholar
  16. 16.
    Nakajima, T. and Koh, M., Carbon, 1997, vol. 35, no. 2, p. 203.CrossRefGoogle Scholar
  17. 17.
    Terrones, M., Redlich, Ph., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Hare, J.P., Cheetham, A.K., Ruhle, M., Kroto, H.W., and Walton, D.R.M., Adv. Mater., 1999, vol. 11, p. 655.CrossRefGoogle Scholar
  18. 18.
    Terrones, M., Terrones, H., Grobert, N., Hsu, W.K., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Kohler-Redlich, Ph., Ruhle, M., Zhang, J.P., and Cheetham, A.K., Appl. Phys. Lett., 1999, vol. 75, no. 25, p. 3932.CrossRefGoogle Scholar
  19. 19.
    Grobert, N., Terrones, M., Trasobares, S., Kordatos, K., Terrones, H., Olivares, J., Zhang, J.P., Redlich, Ph., Hsu, W.K., Reeves, C.I, Wallis, D.I., Zhu, Y.Q., Hare, J.P., Pidduck, A.J., Kroto, H.W., and Walton, D.R.M., Appl. Phys. A: Mater. Sci. Process., 2000, vol. 70, p. 175.CrossRefGoogle Scholar
  20. 20.
    Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Tomnsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Nature, 1997, vol. 388, no. 3, p. 52.CrossRefGoogle Scholar
  21. 21.
    Tang, Ch., Golberg, D., Bando, Y., Xu, F.F., and Liu, B., Chem. Commun., 2003, p. 3050.Google Scholar
  22. 22.
    Yudasaka, M., Kikuchi, R., Ohki, Y., and Yoshimuda, S., Carbon, 1997, vol. 35, no. 2, p. 195.CrossRefGoogle Scholar
  23. 23.
    Deepak, F.L., John Neena Susan, Govindaraj, A., Kulkarni, G.U., and Rao, C.N.R., Chem. Phys. Lett., 2005, vol. 411, nos. 4–6, p. 468.CrossRefGoogle Scholar
  24. 24.
    Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett., 1996, vol. 260, p. 471.CrossRefGoogle Scholar
  25. 25.
    Kurt, R., Klinke, C., Bonard, J.-M., Kern, K., and Karimi, A., Carbon, 2001, vol. 39, no. 14, p. 2163.CrossRefGoogle Scholar
  26. 26.
    Kurt, R. and Karimi, A., Thin Solid Films, 2000, vols. 377-378, p. 163.CrossRefGoogle Scholar
  27. 27.
    Reshetenko, T.V., Avdeeva, L.A., Ismagilov, Z.R., Chuvilin, A.L., and Ushakov, V.A., Appl. Catal., A, 2003, vol. 247, no. 1, p. 51.CrossRefGoogle Scholar
  28. 28.
    Downs, W.B. and Baker, R.T.K., Carbon, 1991, vol. 29, no. 8, p. 1173.CrossRefGoogle Scholar
  29. 29.
    Kruissink, E.S., van Reijen, L.L., and Ross, J.R.H., J. Chem. Soc., Faraday Trans., 1981, vol. 77, no. 1, p. 649.Google Scholar
  30. 30.
    Avdeeva, L.B., Goncharova, O.V., Kochubey, D.I., Novgorodov, B.N., and Plyasova, L.M., Appl. Catal., A, 1995, vol. 126, p. 125.CrossRefGoogle Scholar
  31. 31.
    Karnaukhov, A.P., Fenelonov, V.B., and Gavrilov, V.Yu., Pure Appl. Chem., 1989, vol. 61, no. 11, p. 1913.Google Scholar
  32. 32.
    Gregg, C.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1982.Google Scholar
  33. 33.
    XPSPEAK 4.1 for Windows 95/98, http://www.phy.cuhk.edu.hk/:_surface/XPSPEAK/
  34. 34.
    Using XPS PEAK Version 4.1 (November 2000), http://sun.phy.cuhk.edu.hk/:_surfase/XPSPEAK/XPSPEAKusersguide.doc.
  35. 35.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Inst. Kataliza, 1995.Google Scholar
  36. 36.
    Bernardo, C.A., Alstrup, I., and Rostrup-Nielson, J.R., J. Catal., 1985, vol. 96, no. 2, p. 517.CrossRefGoogle Scholar
  37. 37.
    Tavares, M.T., Bernardo, C.A., Alstrup, I., and Rostrup-Nielson, J.R., J. Catal., 1986, vol. 100, no. 2, p. 545.CrossRefGoogle Scholar
  38. 38.
    Fenelonov, V.B., Avdeeva, L.B., Goncharova, O.V., Okkel, L.G., Simonov, P.A., Derevyankin, A.Yu., and Likholobov, V.A., in Preparation of Catalysts VI, Poncelet, G., Ed., Amsterdam: Elsevier, 1995, p. 825.Google Scholar
  39. 39.
    Avdeeva, L.B., Goncharova, O.V., Kochubey, D.I., Zaikovskii, V.I., Plyasova, L.M., Novgorodov, B.N., and Shaikhutdinov, Sh.K., Appl. Catal., 1996, vol. 141, nos. 1–2, p. 117.Google Scholar
  40. 40.
    Buyanov, R.A., Zakoksovanie katalizatorov (Catalyst Coking), Novosibirsk: Nauka, 1983.Google Scholar
  41. 41.
    Alstrup, I., J. Catal., 1988, vol. 109, no. 2, p. 241.CrossRefGoogle Scholar
  42. 42.
    Rostrup-Nielson, J.R., J. Catal., 1984, vol. 85, no. 1, p. 31.CrossRefGoogle Scholar
  43. 43.
    Nishiyama, Y. and Tamai, Y., J. Catal., 1976, vol. 45, no. 1, p. 1.CrossRefGoogle Scholar
  44. 44.
    Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Chuvilin, A.L., Dokl. Akad. Nauk, 2002, vol. 386, no. 1, p. 65 [Doklady Phys. Chem. (Engl. Transl.), vol. 386, nos. 1–3, p. 207].Google Scholar
  45. 45.
    Jansen, R.J. and Bekkum, H.V., Carbon, 1995, vol. 33, no. 8, p. 1021.CrossRefGoogle Scholar
  46. 46.
    Schmiers, H., Friebel, J., Streubel, P., Hesse, R., and Kopsel, R., Carbon, 1999, vol. 37, no. 12, p. 1965.CrossRefGoogle Scholar
  47. 47.
    Yudasaka, M., Kikuchi, R., Ohki, Y., and Yoshimuda, S., Carbon, 1997, vol. 35, no. 2, p. 195.CrossRefGoogle Scholar
  48. 48.
    Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Chastain, J., Ed., Eden Prairie, MN: Perkin-Elmer, 1992.Google Scholar
  49. 49.
    Stanczyk, K., Dziembal, R., Piwowarska, Z., and Witkowski, S., Carbon, 1995, vol. 33, no. 10, p. 1383.CrossRefGoogle Scholar
  50. 50.
    Jian, M., Rico, Cerdal J.L., and Prins, R., Bull. Soc. Chim. Belg., 1995, vol. 104, nos. 4–5, p. 225.Google Scholar
  51. 51.
    Chu Yongium, Wei Zhaobin, Yang Shuwn, Li Can, Xin Qin, and Min Enze., Appl. Catal., A, 1999, vol. 176, no. 1, p. 17.CrossRefGoogle Scholar
  52. 52.
    Sonnemas, J., Neyens, W.J., and Mars, P., J. Catal., 1974, vol. 34, no. 2, p. 230.CrossRefGoogle Scholar
  53. 53.
    Hadjiloizou, G.C., Butt, J.B., and Dranoff, J.C., J. Catal., 1991, vol. 131, no. 2, p. 545.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • G. N. Il’inich
    • 1
  • A. V. Romanenko
    • 1
  • R. I. Kvon
    • 1
  • V. B. Fenelonov
    • 1
  • V. I. Zaikovskii
    • 1
  • A. V. Ishchenko
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations