Advertisement

Kinetics and Catalysis

, Volume 47, Issue 6, pp 867–872 | Cite as

Porous Pd-containing polypropylene membranes for catalytic water deoxygenation

  • V. I. Lebedeva
  • V. M. Gryaznov
  • I. V. Petrova
  • V. V. Volkov
  • G. F. Tereshchenko
  • E. I. Shkol’nikov
  • L. M. Plyasova
  • D. I. Kochubey
  • R. van der Vaart
  • E. L. J. van Soest-Verecammen
Article

Abstract

Water deoxygenation has been studied in a catalytic membrane reactor in which oxygen is reduced with hydrogen fed into the hollow fiber of a porous polypropylene membrane containing palladium metal on its outer surface. Palladized fibers obtained by different methods and the initial fibers have been characterized by dynamic desorption porosimetry, gas permeability measurements, X-ray structure determination, and light microscopy. The possibility of efficient water deoxygenation at room temperature is demonstrated.

Keywords

Palladium Hydrazine Hydrate Palladium Catalyst Palladium Particle Catalytic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    US Patent 4 268 279, 1981.Google Scholar
  2. 2.
    Sengupta, A., Peterson, P.A., Miller, B.D., Schneider, J., and Fulk, C.W., Sep. Purif. Technol., 1998, no. 14, p. 189.Google Scholar
  3. 3.
    Wiesler, F., Ultrapure Water, 1996, vol. 13, no. 4, p. 27.Google Scholar
  4. 4.
    Leiknes, T.O. and Semmens, M.J., Sep. Purif. Technol., 2000, nos. 22–23, p. 287.Google Scholar
  5. 5.
    Moon, J.-S., Park, K.-K., Kim, J.-H., and Seo, G., Appl. Catal., 1999, no. 184, p. 41.Google Scholar
  6. 6.
    USSR Inventor’s Certificate no. 97, Byull. Izobret., 1971, no. 25.Google Scholar
  7. 7.
    Gryaznov, V.M. and Smirnov, V.S., Usp. Khim., 1974, vol. 43, p. 1716.Google Scholar
  8. 8.
    Dittmeyer, R., Hollein, V., and Daub, K., J. Mol. Catal. A: Chem., 2001, no. 173, p. 135.Google Scholar
  9. 9.
    Rhoda, R.N., Trans. Inst. Met. Finish., 1959, no. 36, p. 82.Google Scholar
  10. 10.
    Pearlstein, F. and Weightman, R.F., Plating, 1969, no. 56, p. 1158.Google Scholar
  11. 11.
    Hirai, H., Nakao, Y., and Toshima, N., J. Macromol. Sci., Part A: Pure Appl. Chem., 1978, no. 12, p. 1117.Google Scholar
  12. 12.
    Shkol’nikov, E.I. and Volkov, V.V., Dokl. Akad. Nauk, 2001, vol. 378, no. 4, p. 507 [Dokl. Phys. Chem. (Engl. Transl.), vol. 378, no. 4, p. 152].Google Scholar
  13. 13.
    RF Patent 2141642, 1998.Google Scholar
  14. 14.
    Soldatov, A.P., Shkol’nikov, E.I., Rodionova, I.A., Volkov, V.V., and Parenago, O.P., Zh. Fiz. Khim., 2004, vol. 78, no. 9, p. 1659 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 78, no. 9, p. 1458].Google Scholar
  15. 15.
    Volkov, V.V., Fadeev, A.G., Khotimsky, V.S., Litvinova, E.G., Selinskaya, Ya.A., McMillan, J.D., and Kelley, S.S., J. Appl. Polym. Sci., 2004.Google Scholar
  16. 16.
    Guinier, A., Theorie et technique de la radiocrystallographie, Paris: Dunod, 1956.Google Scholar
  17. 17.
    Van der Vaart, R., Hafkamp, B., Koele, P.J., Jansen, A.E., Volkov, V.V., Gryaznov, V.M., and Lebedeva, V.I., Int. Conf. on Ultrapure Water, Singapore, 2000.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • V. I. Lebedeva
    • 1
  • V. M. Gryaznov
  • I. V. Petrova
    • 1
  • V. V. Volkov
    • 1
  • G. F. Tereshchenko
    • 1
  • E. I. Shkol’nikov
    • 1
  • L. M. Plyasova
    • 2
  • D. I. Kochubey
    • 2
  • R. van der Vaart
    • 3
  • E. L. J. van Soest-Verecammen
    • 3
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.TNO Institute of Environment, Energy and Process InnovationApeldoornThe Netherlands

Personalised recommendations