Kinetics and Catalysis

, Volume 47, Issue 4, pp 537–548 | Cite as

Two approaches to kinetic analysis applied to the prediction of antioxidant activity

  • A. L. Pomerantsev
  • O. Ye. Rodionova
Article

Abstract

Differential scanning calorimetry (DSC) followed by mathematical data processing can be used instead of the conventional method of long term thermal aging in predicting the activity of antioxidants in polyolefins. In this method, a regression relationship is established between the oxidation initial temperatures measured by DSC (X data) and the oxidation induction period values determined by thermal aging (Y data). Two approaches, called hard and soft, are employed in the construction of models. In the first case, nonlinear regression analysis is used in combination with successive Bayesian estimation. The second approach combines partial least squares regression and simple interval calculation. Use of a common data set makes it possible to compare these approaches and to draw inferences as to the cases in which one or the other is preferable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lavrent’ev, M.M., Kraeva, A.G., and Bukhgeim, A.V., Obratnaya zadacha khimicheskoi kinetiki (Inverse Problem of Chemical Kinetics), Novosibirsk: Vychislitel’nyi Tsentr Sib. Otd. Akad. Nauk SSSR, 1980.Google Scholar
  2. 2.
    Spivak, S.I. and Gorskii, V.G., Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 2, p. 412.Google Scholar
  3. 3.
    Primenenie vychislitel’noi matematiki v khimicheskoi i fizicheskoi kinetike (Computational Mathematical Methods in Chemical and Physical Kinetics), Polak, L.S., Ed., Moscow: Nauka, 1969.Google Scholar
  4. 4.
    Pavlov, B.V. and Brin, E.F., Khim. Fiz., 1984, vol. 3, no. 3, p. 393.Google Scholar
  5. 5.
    Esbensen, K.H., Multivariate Data Analysis in Practice, CAMO, 2000.Google Scholar
  6. 6.
    Esbensen, K., Analiz mnogomernykh dannykh (Multivariate Data Analysis), Rodionova, O., Ed., Barnaul: Altaisk. Gos, Univ., 2003.Google Scholar
  7. 7.
    Haario, H. and Taavitsainen, V.-M., Chemom. Intell. Lab. Syst., 1998, vol. 44, p. 77.CrossRefGoogle Scholar
  8. 8.
    Bijlsma, S., Louwerse, D.J., Windig, W., and Smilde, A.K., Anal. Chim. Acta, 1998, vol. 376, p. 339.CrossRefGoogle Scholar
  9. 9.
    Bijlsma, S., Louwerse, D.J., and Smilde, A.K., J. Chemom., 1999, vol. 13, p. 311.CrossRefGoogle Scholar
  10. 10.
    Taavitsainen, V.-M. and Haario, H., J. Chemom., 2001, vol. 15, p. 215.CrossRefGoogle Scholar
  11. 11.
    De Juan, A., Maeder, M., Martinez, M., and Tauler, R., Chemom. Intell. Lab. Syst., 2000, vol. 54, p. 123.CrossRefGoogle Scholar
  12. 12.
    De Juan, A., Maeder, M., Martinez, M., and Tauler, R., Anal. Chim. Acta, 2001, vol. 442, p. 337.CrossRefGoogle Scholar
  13. 13.
    Bezemer, E. and Rutan, S.C., Chemom. Intell. Lab. Syst., 2001, vol. 59, p. 19.CrossRefGoogle Scholar
  14. 14.
    Brin, E.F. and Pomerantsev, A.L., Khim. Fiz., 1986, vol. 5, no. 12, p. 1674.Google Scholar
  15. 15.
    Pomerantsev, A.L. and Rodionova, O.Ye., Chemom. Intell. Lab. Syst., 1999, vol. 48, p. 121.Google Scholar
  16. 16.
    Rodionova, O.E. and Pomerantsev, A.L., Usp. Khim. 2006, vol. 75, p 302.Google Scholar
  17. 17.
    Bard, Y., Nonlinear Parameter Estimation, New York: Academic, 1974.Google Scholar
  18. 18.
    Pirson, K., Philos. Mag., 1901, vol. 2, no. 6, p. 559.Google Scholar
  19. 19.
    Demidenko, E.Z., Lineinaya i nelineinaya regressii (Linear and Nonlinear Regressions), Moscow: Finansy i Statistika, 1981.Google Scholar
  20. 20.
    Tikhonov, A.N., Dokl. Akad. Nauk SSSR, 1963, vol. 4, p. 1035.Google Scholar
  21. 21.
    Höskuldsson, A., Prediction Methods in Science and Technology, Copenhagen: Thor, 1996.Google Scholar
  22. 22.
    Faber, K., Chemom. Intell. Lab. Syst., 2000, vol. 52, p. 123.CrossRefGoogle Scholar
  23. 23.
    Pomerantsev, A.L., Chemom. Intell. Lab. Syst., 1999, vol. 49, p. 41.CrossRefGoogle Scholar
  24. 24.
    Kantorovich, L.V., Sib. Mat. Zh., 1962, vol. 3, no. 5, p. 701.Google Scholar
  25. 25.
    Voshchinin, A.P., Bochkov, A.F., and Sotirov, G.R., Zavod. Lab., 1990, vol. 56, no. 7, p. 76.Google Scholar
  26. 26.
    Anisimov, V.M., Pomerantsev, A.L., Novoradovskii, A.G., and Karpukhin, O.N., Zh. Prikl. Spektrosk., 1987, vol. 46, p. 117.Google Scholar
  27. 27.
    Akhunov, I.R., Akhmadishin, Z.Sh., and Spivak, S.I., Khim. Fiz., 1982, vol. 12, p. 1660.Google Scholar
  28. 28.
    Bakhitova, R.Kh and Spivak, S.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1999, vol. 42, p. 92.Google Scholar
  29. 29.
    Slin’ko, M.G., Spivak, S.I., and Timoshenko, V.I., Kinet. Katal., 1972, vol. 13, p. 1570.Google Scholar
  30. 30.
    Spivak, S.I., Timoshenko, V.I., and Slin’ko, M.G., Dokl. Akad. Nauk SSSR, 1970, vol. 192, p. 580.Google Scholar
  31. 31.
    Belov, V.M., Karbainov, Yu.A., Sukhanov, V.A., et al., Zh. Anal. Khim., 1994, vol. 49, p. 370.Google Scholar
  32. 32.
    Khlebnikov, A.I., Zh. Anal. Khim., 1996, vol. 51, p. 347.Google Scholar
  33. 33.
    Belov, V.M., Sukhanov, V.A., and Unger, F.G., Teoreticheskie i prikladnye aspekty metoda tsentra neopredelennosti (Theoretical and Applied Aspects of the Uncertainty Center Method), Novosibirsk: Nauka, 1995.Google Scholar
  34. 34.
    Pomerantsev, A.L. and Rodionova, O.Ye., Chemom. Intell. Lab. Syst., 2005, vol. 79, nos. 1–2, p. 73.CrossRefGoogle Scholar
  35. 35.
    Rodionova, O.Ye., Esbensen, K.H., and Pomerantsev, A.L., J. Chemom., 2004, vol. 18, p. 402.CrossRefGoogle Scholar
  36. 36.
    Westad, F. and Martens, H., J. Near Infrared Spectrosc., 2000, vol. 8, p. 117.Google Scholar
  37. 37.
    Cook, R.D., Technometrics, 1977, vol. 19, p. 15.CrossRefGoogle Scholar
  38. 38.
    Cook, R.D., J. Am. Stat. Ass., 1979, vol. 74, p. 169.CrossRefGoogle Scholar
  39. 39.
    Andrews, D.F. and Pregibon, D., J. R. Stat. Soc. B, 1978, vol. 40, p. 84.Google Scholar
  40. 40.
    Draper, N.R. and John, J.A., Technometrics, 1981, vol. 23, p. 21.CrossRefGoogle Scholar
  41. 41.
    Næs, T., J. Chemom., 1989, vol. 1, p. 121.CrossRefGoogle Scholar
  42. 42.
    Höskuldsson, A., Chemom. Intell. Lab. Syst., 2001, vol. 55, p. 23.CrossRefGoogle Scholar
  43. 43.
    Jouan-Rimbaud, D., Massart, D.L., Saby, C.A., and Puel, C., Anal. Chim. Acta, 1997, vol. 350, p. 149.CrossRefGoogle Scholar
  44. 44.
    Fernandez Pierna, J.A., Wahl, F., de Noord, O.E., and Massart, D.L., Chemom. Intell. Lab. Syst., 2002, vol. 63, p. 27.CrossRefGoogle Scholar
  45. 45.
    Pomerantsev, A.L. and Rodionova, O.E., Zh. Anal. Khim., 2006, no. 10 (in press).Google Scholar
  46. 46.
    Rodionova, O.Ye. and Pomerantsev, A.L., in Progress in Chemometrics Research, Pomerantsev, A.L., Ed., New York: Nova Science, 2005, p. 43.Google Scholar
  47. 47.
    Pomerantsev, A.L. and Rodionova, O.Ye., in Progress in Chemometrics Research, Pomerantsev, A.L., Ed., New York: Nova Science, 2005, p. 209.Google Scholar
  48. 48.
    Pomerantsev, A.L. and Rodionova, O.Ye., in Aging of Polymers, Polymer Blends and Polymer Composites, Zaikov, G.E., Ed., New York: Nova Science, 2002, vol. 2, p. 19.Google Scholar
  49. 49.
    Pomerantsev, A., Rodionova, O., and Höskuldsson, A., Chemom. Intell. Lab. Syst., 2006, vol. 81, p. 165.CrossRefGoogle Scholar
  50. 50.
    Clancey, V.J., Nature, 1947, vol. 159, p. 339.Google Scholar
  51. 51.
    Rajkó, R., Anal. Lett., 1994, vol. 27, p. 215.Google Scholar
  52. 52.
    Eriksson, L., Johansson, E., Kettaneh-Wold, N., and Wold, S., Multi-and Megavariate Data Analysis, Umeå: Umetrics, 2001.Google Scholar
  53. 53.
    Burden, F.R., Rosewarne, B.S., and Winkler, D., Chemom. Intell. Lab. Syst., 1997, vol. 38, p. 127.CrossRefGoogle Scholar
  54. 54.
    Héberger, K. and Borosy, A.P., J. Chemom., 1999, vol. 13, p. 473.CrossRefGoogle Scholar
  55. 55.
    Slyapnikov, Yu. A., in Developments in Polymer Stabilization, London: Applied Science, 1981, vol. 5.Google Scholar
  56. 56.
    Bystritskaya, E.V., Pomerantsev, A.L., and Rodionova, O.Ye., J. Chemom., 2000, vol. 14, p. 667.CrossRefGoogle Scholar
  57. 57.
    Maksimova, G.A. and Pomerantsev, A.L., Zavod. Lab., 1995, vol. 61, p. 432.Google Scholar
  58. 58.
    Pomerantsev, A.L., Chemom. Intell. Lab. Syst., 2003, vol. 66, p. 127.Google Scholar
  59. 59.
    Bystritskaya, E.V., Pomerantsev, A.L., and Rodionova, O.Ye., Conferentia Chemometrica (CC-97), Budapest, 1997; http://sol.cc.u-szeged.hu/:_rajko/Pos54.gif.
  60. 60.
    Bystritskaya, E.V., Pomerantsev, A.L., and Rodionova, O.Ye., Proc. 5th Scandinavian Symp. on Chemometrics (SSC5), Lahti, 1997, p. 46.Google Scholar
  61. 61.
    Fitter Add-In [On line], http://polycert.chph.ras.ru/fitter.htm (October 1, 2006).
  62. 62.
    Smilde, A., Bro, R., and Geladi, P., Multi-Way Analysis with Application in the Chemistry Sciences, New York: Wiley, 2004.CrossRefGoogle Scholar
  63. 63.
    Kellner, R.A., Mermet, J.-M., and Otto, M., Analytical Chemistry, Weinheim: Wiley-VCH, 2001Google Scholar
  64. 64.
    Taha, H., Operations Research: An Introduction, New York: Macmillan, 1982.Google Scholar
  65. 65.
    Gass, S., Linear Programming, New York: McGraw-Hill, 1975.Google Scholar
  66. 66.
    Kuhn, H.W. and Tucker, A.W., Linear Inequalities and Related Systems, Annals of Mathematics Studies, Princeton: Princeton Univ. Press, 1956, vol. 38.Google Scholar
  67. 67.
    Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, New York: National Bureau of Standards, 1964.Google Scholar
  68. 68.
    Pavlov, B.V. and Povzner, A.Ya., Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, p. 1056.Google Scholar
  69. 69.
    Marquardt, D.W., SIAM J., 1963, vol. 11, p. 431.Google Scholar
  70. 70.
    Levenberg, K., Q. Appl. Math., 1944, vol. 2, p. 164.Google Scholar
  71. 71.
    Rodionova, O.E. and Pomerantsev, A.L., Kinet. Katal., 2005, vol. 46, no. 3, p. 329 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 3, p. 305].Google Scholar
  72. 72.
    Unscrambler [On line], http://www.camo.no (October 1, 2006).

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • A. L. Pomerantsev
    • 1
  • O. Ye. Rodionova
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations