Journal of Structural Chemistry

, Volume 60, Issue 10, pp 1670–1680 | Cite as

Substituent Effect on the Structure and Photophysical Properties of Phenylamino- and Pyridylamino-2,1,3-Benzothiadiazoles

  • T. S. SukhikhEmail author
  • R. M. Khisamov
  • D. A. Bashirov
  • L. M. Kovtunova
  • N. V. Kuratieva
  • S. N. Konchenko


4-Bromo-7-phenylamino-2,1,3-benzothiadiazole (1) and 4-bromo-7-(3-pyridylamino)-2,1,3-benzo thiadiazole (2) are synthesized. Their crystal structure and photophysical properties are studied in comparison with the known phenylamino- and pyridylamino-derivatives of 2,1,3-benzothiadiazole. It is found that the aryl substituent and noncovalent interactions affect the absorption band positions and emission in a solid and a solution. It is shown that under the mechanical action on polycrystalline samples of compounds 1 and 2 a hypsochromic shift of the emission band occurs, which indicates the weakening of noncovalent intermolecular interactions.


2,1,3-benzothiadiazole crystal structure noncovalent interactions electronic absorption spectroscopy photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to A.P. Zubareva for performing the elemental analysis.


The work was performed within the State Contract of the Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences for basic scientific research.

Conflict of Interests

The authors declare that they have no conflict of interests.


  1. 1.
    N. A. Pushkarevsky, E. A. Chulanova, L. A. Shundrin, A. I. Smolentsev, G. E. Salnikov, E. A. Pritchina, A. M. Genaev, I. G. Irtegova, I. Y. Bagryanskaya, S. N. Konchenko, N. P. Gritsan, J. Beckmann, and A. V. Zibarev. Chem. Eur. J., 2019, 25, 806.CrossRefGoogle Scholar
  2. 2.
    E. A. Chulanova, E. A. Pritchina, L. A. Malaspina, S. Grabowsky, F. Mostaghimi, J. Beckmann, I. Y. Bagryanskaya, M. V. Shakhova, L. S. Konstantinova, O. A. Rakitin, N. P. Gritsan, and A. V. Zibarev. Chem. Eur. J., 2017, 23, 852.CrossRefGoogle Scholar
  3. 3.
    E. A. Chulanova, N. A. Semenov, N. A. Pushkarevsky, N. P. Gritsan, and A. V. Zibarev. Mendeleev Commun., 2018, 28, 453.CrossRefGoogle Scholar
  4. 4.
    A. Abbas, J. J. Pillai, K. Sreekumar, R. Joseph, and C. S. Kartha. Opt. Mater., 2018, 84, 813.CrossRefGoogle Scholar
  5. 5.
    V.J. Rodrigues de Oliveira, E. Assunção da Silva, M. L. Braunger, H. Awada, H. de Santana, R. C. Hiorns, C. Lartigau-Dagron, and C. de Almeida Olivati. J. Mol. Liq., 2018, 268, 114.CrossRefGoogle Scholar
  6. 6.
    T. S. Sukhikh, D. S. Ogienko, D. A. Bashirov, and S. N. Konchenko. Russ. Chem. Bull., 2019, 4, 651.CrossRefGoogle Scholar
  7. 7.
    T. S. Sukhikh, D. A. Bashirov, D. S. Ogienko, N. V. Kuratieva, P. S. Sherin, M. I. Rakhmanova, E. A. Chulanova, N. P. Gritsan, S. N. Konchenko, and A. V. Zibarev. RSC Adv., 2016, 6, 43901.CrossRefGoogle Scholar
  8. 8.
    E. A. Knyazeva and O. A. Rakitin. Russ. Chem. Rev., 2016, 85, 1146.CrossRefGoogle Scholar
  9. 9.
    B. A. D. Neto, P. H. P.R. Carvalho, and J. R. Correa. Acc. Chem. Res., 2015, 48, 1560.CrossRefGoogle Scholar
  10. 10.
    L. S. Konstantinova, E. A. Knyazeva, and O. A. Rakitin. Org. Prep. Proced. Int., 2014, 46, 475.CrossRefGoogle Scholar
  11. 11.
    O. A. Rakitin and A. V. Zibarev. Asian J. Org. Chem., 2018, 7, 2397.CrossRefGoogle Scholar
  12. 12.
    E. A. Knyazeva and O. A. Rakitin. Chem. Heterocyclic Compounds, 2017, 53, 855.CrossRefGoogle Scholar
  13. 13.
    T. N. Chmovzh, E. A. Knyazeva, L. V. Mikhalchenko, I. S. Golovanov, S. A. Amelichev, and O. A. Rakitin. Eur. J. Org. Chem., 2018, 2018, 5668.CrossRefGoogle Scholar
  14. 14.
    N. T. Chmovzh, A. E. Knyazeva, A. K. Lyssenko, V. V. Popov, and A. O. Rakitin. Molecules, 2018, 23, 2576.CrossRefGoogle Scholar
  15. 15.
    A. A. R. Mota, J. R. Correa, L. P. de Andrade, J. A. F. Assumpção, G. A. de Souza Cintra, L. H. Freitas-Junior, W. A. da Silva, H. C. B. de Oliveira, and B. A. D. Neto. ACS Omega, 2018, 3, 3874.CrossRefGoogle Scholar
  16. 16.
    F. F. D. Oliveira, D. C. B. D. Santos, A. A. M. Lapis, J. R. Corrêa, A. F. Gomes, F. C. Gozzo, P. F. Moreira, V. C. de Oliveira, F. H. Quina, and B. A. D. Neto. Bioorg. Med. Chem. Lett., 2010, 20, 6001.CrossRefGoogle Scholar
  17. 17.
    X. Han, Z. Wang, Q. Cheng, X. Meng, D. Wei, Y. Zheng, J. Ding, and H. Hou. Dyes and Pigments, 2017, 145, 576.CrossRefGoogle Scholar
  18. 18.
    Q. Ye, S. Chen, D. Zhu, X. Lu, and Q. Lu. J. Mater. Chem. B, 2015, 3, 3091.CrossRefGoogle Scholar
  19. 19.
    B. A. D. Neto, P. H. P. R. Carvalho, D. C. B. D. Santos, C. C. Gatto, L. M. Ramos, N. M. D. Vasconcelos, J. R. Corrêa, M. B. Costa, H. C. B. de Oliveira, and R. G. Silva. RSC Adv., 2012, 2, 1524.CrossRefGoogle Scholar
  20. 20.
    F. Ni, Z. Wu, Z. Zhu, T. Chen, K. Wu, C. Zhong, K. An, D. Wei, D. Ma, and C. Yang. J. Mater. Chem. C, 2017, 5, 1363.CrossRefGoogle Scholar
  21. 21.
    J. Wu, G. Lai, Z. Li, Y. Lu, T. Leng, Y. Shen, and C. Wang. Dyes and Pigments, 2016, 124, 268.CrossRefGoogle Scholar
  22. 22.
    C. Gu, D. Liu, J. Wang, Q. Niu, C. Gu, B. Shahid, B. Yu, H. Cong, and R. Yang. J. Mater. Chem. A, 2018, 6, 2371.CrossRefGoogle Scholar
  23. 23.
    C. Rodríguez-Seco, S. Biswas, G. D. Sharma, A. Vidal-Ferran, and E. Palomares. J. Phys. Chem. C, 2018, 122, 13782.CrossRefGoogle Scholar
  24. 24.
    H. Sakurai, M. T. S. Ritonga, H. Shibatani, and T. Hirao. J. Org. Chem., 2005, 70, 2754.CrossRefGoogle Scholar
  25. 25.
    P. Kubelka. J. Opt. Soc. Am., 1948, 38, 448.CrossRefGoogle Scholar
  26. 26.
    Bruker AXS Inc. APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11), Bruker Advanced X-ray Solutions. Madison, Wisconsin, USA, 20002012.Google Scholar
  27. 27.
    G. M. Sheldrick. Acta Crystallogr., 2015, C71, 3.Google Scholar
  28. 28.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339.CrossRefGoogle Scholar
  29. 29.
    T. S. Sukhikh, D. S. Ogienko, D. A. Bashirov, N. V. Kurat’eva, A. I. Smolentsev, and S. N. Konchenko. Russ. J. Coord. Chem., 2019, 45, 30.CrossRefGoogle Scholar
  30. 30.
    M. T. Ritonga, H. Shibatani, H. Sakurai, T. Moriuchi, and T. Hiaro. Heterocycles, 2006, 68, 829.CrossRefGoogle Scholar
  31. 31.
    D. A. Bashirov, T. S. Sukhikh, N. V. Kuratieva, E. A. Chulanova, I. V. Yushina, N. P. Gritsan, S. N. Konchenko, and A. V. Zibarev. RSC Adv., 2014, 4, 28309.CrossRefGoogle Scholar
  32. 32.
    T. S. Sukhikh, V. Y. Komarov, S. N. Konchenko, and E. Benassi. Polyhedron, 2018, 139, 33.CrossRefGoogle Scholar
  33. 33.
    A. D. Laurent, Y. Houari, P. H. P. R. Carvalho, B. A. D. Neto, and D. Jacquemin. RSC Adv., 2014, 4, 14189.CrossRefGoogle Scholar
  34. 34.
    T. S. Sukhikh, D. A. Bashirov, S. Shuvaev, V. Y. Komarov, N. V. Kuratieva, S. N. Konchenko, and E. Benassi. Polyhedron, 2018, 141, 77.CrossRefGoogle Scholar
  35. 35.
    T. S. Sukhikh, D. S. Ogienko, D. A. Bashirov, N. V. Kuratieva, V. Y. Komarov, M. I. Rakhmanova, and S. N. Konchenko. J. Coord. Chem., 2016, 69, 3284.CrossRefGoogle Scholar
  36. 36.
    J. Gierschner and S. Y. Park, J. Mater. Chem. C, 2013, 1, 5818.CrossRefGoogle Scholar
  37. 37.
    Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu. Chem. Soc. Rev., 2012, 41, 3878.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. S. Sukhikh
    • 1
    • 2
    Email author
  • R. M. Khisamov
    • 1
    • 2
  • D. A. Bashirov
    • 1
    • 2
  • L. M. Kovtunova
    • 2
    • 3
  • N. V. Kuratieva
    • 1
    • 2
  • S. N. Konchenko
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations