Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 10, pp 1622–1629 | Cite as

Crystal Chemical Study of Two Scandium(III) Complexes with Pivaloyltrifluoroacetone

  • K. V. ZherikovaEmail author
  • N. V. Kuratieva
Article

Abstract

A scandium(III) tris-(pivaloyltrifluoroacetonate) complex [Sc(ptac)3] is synthesized, purified, and characterized by the elemental analysis, IR spectroscopy, and the TG/DTA technique. The complex is a highly volatile and low-melting compound that is stable in air and to heat. Slow evaporation of the mother ethanol liquor at room temperature leads to the growth of single crystals of a mixed-ligand complex with an alcohol molecule: [Sc(EtOH)(ptac)3]. By single crystal X-ray diffraction at a temperature of 150(2) K the [Sc(ptac)3] and [Sc(EtOH)(ptac)3] structures are solved. The crystallographic data are: for C24H30F9O6Sc space group P-1, a = 9.1565(2) Å, b = 9.6854(3) Å, c = 17.3271(4) Å, β = 79.927(1)°, V = 1465.79(7) Å3, Z = 2, dcalc = 1.428 g/cm3, R = 0.041; for C26F9O7Sc space group P-1, a = 9.9376(3) Å, b = 13.0243(4) Å, c = 13.2743(4) Å, β = 111.932°, V = 1575.85(8) Å3, Z = 2, dcalc = 1.426 g/cm3, R = 0.048. Both structures are composed of neutral molecules; the metal atom coordinates six oxygen atoms of three ligands of β-diketone ([Sc(ptac)3]) and additionally an oxygen atom of the ethanol molecule ([Sc(EtOH)(ptac)3]). Tert-butyl and trifluoromethyl substituents in both complexes are oriented so that they create a facial isomer. The Sc-O distances are within 2.07–2.11 Å in [Sc(ptac)3], and in [Sc(EtOH)(ptac)3] they are within 2.10–2.24 Å. In the crystals of both compounds, the molecules are linked by only van der Waals interactions, forming a pseudo-layered structure with a hexagonal arrangement inside the layer. Six shortest Sc⋯Sc distances in [Sc(ptac)3] are within 8.34–10.42 Å. In [Sc(EtOH)(ptac)3], a distorted hexagonal packing has an average parameter of ~9.5 Å.

Keywords

scandium pivaloyltrifluoroacetone synthesis single crystal X-ray diffraction analysis TG/DTA MOCVD precursor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to O.A. Plyusnina and I.V. Korolkov for performing TG and powder X-ray diffraction experiments respectively.

Funding

The work on the synthesis, purification, and characterization of [Sc(ptac)3] was supported by Russian Foundation for Basic Research grant No. 18-08-01105_a.

The single crystal X-ray diffraction analysis and the isolation of single crystals were performed within the State Contract of the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences for basic scientific research.

Conflict of Interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    X. Song, M. H. Chang, and M. Pecht. JOM, 2013, 65, 1276.CrossRefGoogle Scholar
  2. 2.
    Z. Xu, A. Daga, and H. Chen. Appl. Phys. Lett., 2001, 79, 3782.CrossRefGoogle Scholar
  3. 3.
    D. Grosso and P. A. Sermon. Thin Solid Films, 2003, 426, 178.CrossRefGoogle Scholar
  4. 4.
    K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohatý, T. Yanagitani, and A. A. Kaminskii. Laser Phys. Lett., 2007, 4, 507.CrossRefGoogle Scholar
  5. 5.
    V. Lupei, N. Pavel, and A. Lupei. Laser Physics, 2014, 24, 045801.CrossRefGoogle Scholar
  6. 6.
    P. de Rouffignac, A. P. Yousef, K. H. Kim, and R. G. Gordon. Electrochem. Solid State Lett., 2006, 9, F45.CrossRefGoogle Scholar
  7. 7.
    T. P. Smirnova, L. V. Yakovkina, V. O. Borisov, and M. S. Lebedev. J. Struct. Chem., 2017, 58, 1573.CrossRefGoogle Scholar
  8. 8.
    D. Jeong, J. Kim, O. Kwon, C. Lim, S. Sengodan, J. Shin, and G. Kim. Appl. Sci., 2018, 8, 2217.CrossRefGoogle Scholar
  9. 9.
    E. Y. Jung, C. S. Park, T. E. Hong, and S. H. Sohn. Jpn. J. Appl. Phys., 2014, 53, 036002.CrossRefGoogle Scholar
  10. 10.
    A. I. Smolentsev, K. V. Zherikova, M. S. Trusov, P. A. Stabnikov, D. Yu. Naumov, and S. V. Borisov. J. Struct. Chem., 2011, 52, 1070.CrossRefGoogle Scholar
  11. 11.
    N. V. Kuratieva, E. S. Vikulova, and K. V. Zherikova. J. Struct. Chem., 2018, 59, 131CrossRefGoogle Scholar
  12. 12.
    Bruker AXS Inc. APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004.Google Scholar
  13. 13.
    G. M. Sheldrick. Acta Crystallogr., 2008, A64(1), 112–122.CrossRefGoogle Scholar
  14. 14.
    V. P. Fadeeva, V. D. Tikhova, and O. N. Nikulicheva. J. Anal. Chem., 2008, 63, 1094.CrossRefGoogle Scholar
  15. 15.
    T. J. Anderson, M. A. Neuman, and G. A. Melson. Inorg. Chem., 1973, 12, 927.CrossRefGoogle Scholar
  16. 16.
    A. J. Rossini and R. W. Schurko. J. Am. Chem. Soc., 2006, 128, 1039.CrossRefGoogle Scholar
  17. 17.
    D. W. Bennett, T. A. Siddiquee, D. T. Haworth, and S. V. Lindeman. J. Chem. Cryst., 2007, 37, 207.CrossRefGoogle Scholar
  18. 18.
    E. G. Zaitseva, I. A. Baidina, P. A. Stabnikov, S. V. Borisov, and I. K. Igumenov. J. Struct. Chem., 1990, 31, 184.Google Scholar
  19. 19.
    C. Merkens, O. Pecher, F. Steuber, S. Eisenhut, A. Görne, F. Haarmann, and U. Englert. Z. Anorg. Allg. Chem., 2013, 639, 340.CrossRefGoogle Scholar
  20. 20.
    K. V. Zherikova, L. N. Zelenina, T. P. Chusova, N. V. Gelfond, and N. B. Morozova. J. Chem. Thermodyn., 2016, 101, 162.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations