Journal of Structural Chemistry

, Volume 60, Issue 10, pp 1578–1583 | Cite as

Pseudorotation of the Benzene Radical Cation Associated with HCN or CH3CN Molecules

  • I. V. BeregovayaEmail author
  • R. V. Andreev
  • L. N. Shchegoleva


for the first time the question is raised concerning the effect of ion-molecular associations on the structural flexibility of radical ions of aromatic compounds with respect to pseudorotation. It is shown within the DFT method that the complex structure of the potential energy surface and structural flexibility of the Jahn-Teller benzene cation are preserved during the formation of complexes with a hydrogen cyanide or acetonitrile molecule. The pseudorotation barrier of the radical cation in considered complexes depends on the relative orientation of particles and varies from 0.1 kcal/mol to ∼2 kcal/mol.


intermolecular interactions ion-molecular complexes Jahn-Teller ions potential energy surface pseudorotation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the Russian Foundation for Basic Research for financial support (grant No. 17-03-00564a).

Conflict of Interests

The authors declare that they have no conflict of interests.


  1. 1.
    L. N. Shchegoleva and I. V. Beregovaya. Int. J. Quant. Chem., 2016, 116, 161.CrossRefGoogle Scholar
  2. 2.
    K. Raghavachari, R. C. Haddon, T. A. Miller, and V. E. Bondybey. J. Chem. Phys., 1983, 79, 1387.CrossRefGoogle Scholar
  3. 3.
    M. Huang and S. Lunell. J. Chem. Phys., 1990, 92, 6081.CrossRefGoogle Scholar
  4. 4.
    R. Lindner, K. Muller-Dethlefs, E. Wedum, K. Haber, and E. R. Grant. Science, 1996, 271, 1698.CrossRefGoogle Scholar
  5. 5.
    K. Muller-Dethlefs and J. B. Peel. J. Chem. Phys., 1999, 111, 10550.CrossRefGoogle Scholar
  6. 6.
    B. E. Applegate and T. A. Miller. J. Chem. Phys., 2002, 117, 10654.CrossRefGoogle Scholar
  7. 7.
    S. Scheit, S. Goswami, H.-D. Meyer, and H. Köppel. Comput. Theor. Chem., 2019, 1150, 71.CrossRefGoogle Scholar
  8. 8.
    H. Tachikawa. J. Phys. Chem. A, 2018, 122, 4121.CrossRefGoogle Scholar
  9. 9.
    I. B. Bersuker. Chem. Rev., 2001, 101, 1067.CrossRefGoogle Scholar
  10. 10.
    M. Iwasaki, K. Toriyama, and K. Nunome. J. Chem. Soc., Chem. Commun., 1983, 6, 320.CrossRefGoogle Scholar
  11. 11.
    V. I. Feldman, F. F. Sukhov, and A. Yu. Orlov. Chem. Phys. Lett., 1999, 300, 713.CrossRefGoogle Scholar
  12. 12.
    A. M. Hamid, A.-R. Soliman, and M. S. El-Shall. J. Phys. Chem. A, 2013, 117, 6.CrossRefGoogle Scholar
  13. 13.
    S. Grimme, J. Antony, S Ehrlich, and H. Krieg. J. Chem. Phys., 2010, 132, 154104.CrossRefGoogle Scholar
  14. 14.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Cordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery. J. Comput. Chem., 1993, 14, 1347.CrossRefGoogle Scholar
  15. 15.
    G. Schaftenaar and J. H. Noordik. J. Comput. - Aided Mol. Des., 2000, 14, 123.CrossRefGoogle Scholar
  16. 16.
    I. V. Beregovaya and L. N. Shchegoleva. Int. J. Quant. Chem., 2002, 88, 481.CrossRefGoogle Scholar
  17. 17.
    I. V. Beregovaya and L. N. Shchegoleva. J. Struct. Chem., 2012, 53, 239.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Beregovaya
    • 1
    Email author
  • R. V. Andreev
    • 1
  • L. N. Shchegoleva
    • 1
  1. 1.Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations