Journal of Structural Chemistry

, Volume 60, Issue 6, pp 919–931 | Cite as

The State of Platinum and Structural Features of Pt/Al2O3 Catalysts in the Reaction of NH3 Oxidation

  • D. A. Svintsitskiy
  • E. M. Slavinskaya
  • O. A. Stonkus
  • A. V. Romanenko
  • A. I. Stadnichenko
  • L. S. Kibis
  • E. A. Derevyannikova
  • A. A. Evtushkova
  • A. I. BoroninEmail author


The work is related to the fundamental research of the process of ammonia neutralization using catalytic oxidation over Pt/Al2O3 catalysts in an excess of oxygen. The catalysts are synthesized using nitrate precursors on the supports prepared from Pural SCF-55 aluminum hydroxide by the calcination in air at 550°C or 750°C for 4 h. A number of physicochemical methods are used to study morphology, dispersion, structure, and electronic state of the catalyst active component before and after the reduction in hydrogen. It is shown that the synthesized Pt/Al2O3 catalysts are characterized by high dispersion of the active component: the size of deposited platinum particles is in the range from 0.5 nm to 2.0 nm, while the proportion of oxidized and reduced Pt forms varies. Based on the results of kinetic measurements, the catalyst activity and the selectivity to all major products (N2, N2O, NO, NO2) are determined depending on the reaction temperature. The results of the catalytic testing are discussed in relation to the data on dispersion and oxidation state of platinum.


ammonia slip oxidation Pt/Al2O3 supported catalysts alumina platinum nanoparticles catalyst screening XRD TEM XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2019_1208_MOESM0_ESM.pdf (417 kb)
Supplementary Materials to: The State of Platinum and Structural Features of Pt/Al2O3 Catalysts in the Reaction of NH3 Oxidation


  1. 1.
    D. Chakraborty, H. N. Petersen, C. Elkjaer, A. Cagulada, and T. Johannessen. Fuel Cells Bull., 2009, 2009, 12.CrossRefGoogle Scholar
  2. 2.
    S. B. Simonsen, D. Chakraborty, I. Chorkendorff, and S. Dahl. Appl. Catal. A: Gen., 2012, 447-448, 22.CrossRefGoogle Scholar
  3. 3.
    S. R. Deshmukh, A. B. Mhadeshwar, and D. G. Vlachos. Ind. Eng. Chem. Res., 2004, 43, 2986.CrossRefGoogle Scholar
  4. 4.
    F. Schüth, R. Palkovits, R. Schlögl, and D. S. Su. Energy and Environmental Sci., 2012, 5, 6278.CrossRefGoogle Scholar
  5. 5.
    G. Busca and C. Pistarino. J. Loss Prev. Process Ind., 2003, 16, 157.CrossRefGoogle Scholar
  6. 6.
    L. Chmielarz and M. Jablonska. RSC Advances, 2015, 5, 43408.CrossRefGoogle Scholar
  7. 7.
    M. Jablonska and R. Palkovits. Appl. Catal. B: Environ., 2016, 181, 332.CrossRefGoogle Scholar
  8. 8.
    A. Walker. Top. Catal., 2016, 59, 695.CrossRefGoogle Scholar
  9. 9.
    M. Colombo, I. Nova, E. Tronconi, and G. Koltsakis. Top. Catal., 2013, 56, 177.CrossRefGoogle Scholar
  10. 10.
    S. Shrestha, M. P. Harold, K. Kamasamudram, and A. Yezerets. Catal. Today, 2014, 231, 105.CrossRefGoogle Scholar
  11. 11.
    A. Scheuer, W. Hauptmann, A. Drochner, J. Gieshoff, H. Vogel, and M. Votsmeier. Appl. Catal. B: Environ., 2012, 111-112,445. Google Scholar
  12. 12.
    A. Scheuer, M. Votsmeier, A. Schuier, J. Gieshoff, A. Drochner, and H. Vogel. Top. Catal., 2009, 52, 1847.CrossRefGoogle Scholar
  13. 13.
    S. Shrestha, M. P. Harold, K. Kamasamudram, and A. Yezerets. Top. Catal., 2013, 56, 182.CrossRefGoogle Scholar
  14. 14.
    J. J. Ostermaier, J. R. Katzer, and W. H. Manogue. J. Catal., 1974, 33, 457.CrossRefGoogle Scholar
  15. 15.
    J. J. Ostermaier, J. R. Katzer, and W. H. Manogue. J. Catal., 1976, 41, 277.CrossRefGoogle Scholar
  16. 16.
    Y. Li and J. N. Armor. Appl. Catal. B: Environ., 1997, 13, 131.CrossRefGoogle Scholar
  17. 17.
    T. K. Hansen. Development of New Diesel Oxidation and NH3 Slip Catalysts. Ph.D. Thesis. Technical University of Denmark (DTU), 2017.Google Scholar
  18. 18.
    R. Kraehnert and M. Baerns. Chem. Eng. J., 2008, 137, 361.CrossRefGoogle Scholar
  19. 19.
    S. Hinokuma, H. Shimanoe, S. Matsuki, M. Kawano, Y. Kawabata, and M. Machida. Chem. Lett., 2016, 45, 179.CrossRefGoogle Scholar
  20. 20.
    Powder Diffraction File. PDF-2, Release 2009. International Centre for Diffraction Data. USA, 2009.Google Scholar
  21. 21.
    TOPAS, version 4.2. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.Google Scholar
  22. 22.
    D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. Le Bail, D. Louer, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stephens, and B. H. Toby. J. Appl. Crystallogr., 2004, 37, 911.CrossRefGoogle Scholar
  23. 23.
    A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, V.I. Zaikovskii, O.A. Stonkus, I. G. Danilova, L. M. Plyasova, I. A. Polukhina, and A. I. Boronin. Appl. Catal. B: Environ., 2010, 97, 57.CrossRefGoogle Scholar
  24. 24.
    G. Corro, J. L. G. Fierro, and V. C. Odilon. Catal. Commun., 2003, 4, 371.CrossRefGoogle Scholar
  25. 25.
    A. Fritsch and P. Légaré. Surf. Sci., 1987, 184, L355.CrossRefGoogle Scholar
  26. 26.
    E. A. Lashina, E. M. Slavinskaya, N. A. Chumakova, O. A. Stonkus, R. V. Gulyaev, A. I. Stadnichenko, G. A. Chumakov, A. I. Boronin, and G. V. Demidenko. Chem. Eng. Sei., 2012, 83, 149.CrossRefGoogle Scholar
  27. 27.
    D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, and A. I. Boronin. ChemPhysChem., 2015, 16, 3318.CrossRefPubMedGoogle Scholar
  28. 28.
    E. D. Grayfer, L. S. Kibis, A. I. Stadnichenko, O. Y. Vilkov, A. I. Boronin, E. M. Slavinskaya, O. A. Stonkus, and V. E. Fedorov. Carbon, 2015, 89, 290.CrossRefGoogle Scholar
  29. 29.
    C. A. Schneider, W. S. Rasband, and K. W. Eliceiri. Nature Methods, 2012, 9, 671.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Z. R. Ismagilov, S. A. Yashnik, A. N. Startsev, A. I. Boronin, A. I. Stadnichenko, V. V. Kriventsov, S. Kasztelan, D. Guillaume, M. Makkee, and J. A. Moulijn. Catal. Today, 2009, 144, 235.CrossRefGoogle Scholar
  31. 31.
    M. Y. Smirnov, A. V. Kalinkin, and V. I. Bukhtiyarov. J. Struct. Chem., 2007, 48, 1053.CrossRefGoogle Scholar
  32. 32.
    S. L. Bergman, J. Granestrand, Y. Tang, R. S. Paris, M. Nilsson, F. F. Tao, C. Tang, S. J. Pennycook, L. J. Pettersson, and S. L. Bernasek. Appl. Catal. B: Environ., 2018, 220, 506.CrossRefGoogle Scholar
  33. 33.
    A. V. Kalinkin, M. Y. Smirnov, A. I. Nizovskii, and V. I. Bukhtiyarov. J. Electron Spectrosc. Relat. Phenom., 2010, 177, 15.CrossRefGoogle Scholar
  34. 34.
    A. I. Stadnichenko, V. V. Muravev, S. V. Koscheev, V. I. Zaikovskii, H. A. Aleksandrov, K. M. Neyman, and A. I. Boronin. Surf. Sci., 2019, 679, 273.CrossRefGoogle Scholar
  35. 35.
    G. K. Wertheim, S. B. DiCenzo, and D. N. E. Buchanan. Phys. Rev. B, 1986, 33, 5384.CrossRefGoogle Scholar
  36. 36.
    M. G. Mason. Phys. Rev. B, 1983, 27, 748.CrossRefGoogle Scholar
  37. 37.
    A. Feiten, J. Ghijsen, J. J. Pireaux, W. Drube, R. L. Johnson, D. Liang, M. Hecq, G. Van Tendeloo, and C. Bittencourt. Micron, 2009, 40, 74.CrossRefGoogle Scholar
  38. 38.
    A. C. M. van den Broek. Low Temperature Oxidation of Ammonia Over Platinum and Iridium Catalysts, Ph.D. Thesis. Technische Universiteit Eindhoven (Eindhoven), 1998.Google Scholar
  39. 39.
    D. P. Sobczyk, E. J. M. Hensen, A. M. de Jong, and R. A. van Santen. Top. Catal., 2003, 23, 109.CrossRefGoogle Scholar
  40. 40.
    C.-B. Wang and C.-T. Yeh. J. Catal, 1998, 178, 450.CrossRefGoogle Scholar
  41. 41.
    N. Seriani, Z. Jin, W. Pompe, and L. C. Ciacchi. Phys. Rev. B, 2007, 76, 155421.CrossRefGoogle Scholar
  42. 42.
    C.-P. Hwang and C.-T. Yeh. J. Catal, 1999, 182, 48.CrossRefGoogle Scholar
  43. 43.
    C.-P. Hwang and C.-T. Yeh. J. Mol. Catal. A: Chem., 1996, 112, 295.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. A. Svintsitskiy
    • 1
    • 2
  • E. M. Slavinskaya
    • 1
    • 2
  • O. A. Stonkus
    • 1
    • 2
  • A. V. Romanenko
    • 1
  • A. I. Stadnichenko
    • 1
    • 2
  • L. S. Kibis
    • 1
    • 2
  • E. A. Derevyannikova
    • 1
  • A. A. Evtushkova
    • 2
  • A. I. Boronin
    • 1
    • 2
    Email author
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations