Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 2018–2022 | Cite as

Structural Changes in Ytterbium Ferrite YbFe2O4 in the Temperature Range From–150 °C TO 300 °C

  • O. M. FedorovaEmail author
  • L. B. Vedmid’
Article
  • 4 Downloads

Abstract

Structural changes and thermal expansion of the iron ferrite sample YbFe2O4 of a rhombohedral modification are studied by high-temperature X-ray diffraction and differential thermal analysis. It is demonstrated that no phase transitions are observed in the temperature range from–150 °C to 300 °С. There are only anisotropic changes in unit cell parameters due to changes in Yb–O and Fe–O bond lengths.

Keywords

iron ferrite X-ray crystallographic analysis thermal expansion coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Pyatakov and A. K. Zvezdin. Phys.–Usp., 2012, 55, 557–581.CrossRefGoogle Scholar
  2. 2.
    K. F. Wang., J.–M. Liu, and Z. F Ren. Adv. Phys., 2009, 58, 321–448.CrossRefGoogle Scholar
  3. 3.
    J. Blasco, S. Lafuerza, J. Garcia, and G. Subias. Phys. Rev., 2014, 90(11), 094119.CrossRefGoogle Scholar
  4. 4.
    P. Ren, Z. Wang, W. G. Zhu, H. A. Huan, and L. Wang. J. Appl. Phys., 2011, 109, 074109CrossRefGoogle Scholar
  5. 5.
    F. Wang, C.–H. Li, Т. Zou, Y. Liu, and Y. Sun. J. Phys.: Condens. Matter, 2010, 22, 496001.Google Scholar
  6. 6.
    D. S. F. Viana, R. A. M. Gotardo, L. F. Cotica, I. A. Santos, M. Olzon–Dionysio, S. D. Souza, D. Garcia, L. A. Eiras, and A. A. Coelho. J. Appl. Phys., 2011, 110, 034108.CrossRefGoogle Scholar
  7. 7.
    Y. Qin, X. Q. Liu, Y. J. Wu, and X. M. Chen. J. Am. Ceram. Soc., 2013, 96, 2506–2509.CrossRefGoogle Scholar
  8. 8.
    J. Bourgeois, G. Andre, S. Petit, J. Robert, M. Polenar, J. Rouquett, E. Elkaim, M. Hervieu, A. Maignan, C. Martin, and F. Damay. Phys. Rev. В, 2012, 86, 024413.CrossRefGoogle Scholar
  9. 9.
    M. Kishi, S. Miura, Y. Nakagawa, N. Kimizuka, I. Shindo, and K. Siratori. J. Phys. Soc. Jpn., 1982, 51, 2801.CrossRefGoogle Scholar
  10. 10.
    K. Yoshi, N. Ikeda, and A. Nakamura. Phys. B, 2006, 378, 585–588.CrossRefGoogle Scholar
  11. 11.
    M. Tanaka, K. Siratori, and N. Kimizuka. J. Phys. Soc. Jpn., 1984, 53, 760–763.CrossRefGoogle Scholar
  12. 12.
    L. B. Vedmid′, A. M. Yankin, V. M. Kоzin, and O. M. Fedorova. Russ. J. Phys. Chem. A, 2017, 91(8), 1384–1387.Google Scholar
  13. 13.
    H. M. Rietveld. J. Appl. Crystallogr., 1969, 2, 65–71.CrossRefGoogle Scholar
  14. 14.
    K. Kato, I. Kawada, N. Kimizuka, and T. Katsura. Kristallogr. Kristallgeom., Kristallphys., Kristallchem. 1975, 141(3/4), 314–320.Google Scholar
  15. 15.
    B. V. Beznosikov and K. S. Aleksandrov. Perspekt. Mater., 2007, (1), 46–49.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations