Thermal Expansion of FeBO3 and Fe3BO6 Antiferromagnets Near the Neel Temperature
Article
First Online:
- 10 Downloads
Abstract
FeBO3 and Fe3BO6 are antiferromagnets with TN ≈ 348 K and 508 K respectively. This work presents the results of the study of the thermal expansion and phase transitions occurring in these borates by hightemperature X-ray powder diffraction and Mössbauer spectroscopy in a wide temperature range. Unit cell parameters are refined by the Rietveld method at different temperatures. For both compounds an abrupt change in thermal expansion coefficients α is revealed near the magnetic antiferromagnet–paramagnet phase transition.
Keywords
iron borates antiferromagnets high-temperature X-ray powder diffraction Mössbauer spectroscopy thermal expansionPreview
Unable to display preview. Download preview PDF.
References
- 1.H. Makram, L. Touron, and J. Loriers. J. Crystal Growth., 1972, 13/14, 585–587.Google Scholar
- 2.R. Diehl. Solid State Commun., 1975, 17, 743–745.CrossRefGoogle Scholar
- 3.J. G. White, A. Miller, and R. E. Nielsen. Acta Crystallogr., 1965, 19(1), 1060/1061.Google Scholar
- 4.B. Yu. Sokolov. Techn. Phys., 2006, 51, 589–594.CrossRefGoogle Scholar
- 5.V. D. Buchel′nikov, N. K. Dan′shin, D. M. Dolgushin, A. I. Izotov, V. G. Shavrov, L. T. Tsymbal, and T. Takagi. Phys. Solid State., 2005, 47(10), 1886–1891.CrossRefGoogle Scholar
- 6.V. Potapkin, A. I. Chumakov, G. V. Smirnov, J. P. Celse, R. Rüffer, C. McCammon, and L. Dubrovinsky. J. Synchrotron Radiat., 2012, 19, 559–569.CrossRefGoogle Scholar
- 7.J. Tian, B. Wang, F. Zhao, X. Ma, Y. Liu, H. K. Liu, and Z. Huang. Chem. Commun., 2017, 53, 4698–4701.CrossRefGoogle Scholar
- 8.R. Wolfe, R. D. Pierce, M. Eibschütz, and J. W. Nielsen. Solid State Commun., 1969, 7, 949–952.CrossRefGoogle Scholar
- 9.S. Nakamura, T. Mitsui, K. Fujiwara, N. Ikeda, M. Kurokuzu, and S. Shimomura. J. Phys. Soc. Jpn., 2017, 86, 084701–1–084701–5.CrossRefGoogle Scholar
- 10.T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich. Nature Nanotechn. 2016, 11, 231–241.CrossRefGoogle Scholar
- 11.T. Saito. J. Phys. Soc. Jpn. 1965, 38(11), 2008/2009.Google Scholar
- 12.Ya. P. Biryukov, R. S. Bubnova, S. K. Filatov, and A. G. Goncharov. Glass Phys. Chem., 2016, 42(2), 202–206.CrossRefGoogle Scholar
- 13.A. Zamkovskaya, E. Maksimova, I. Nauhatsky, and M. Shapoval. IOP Conf. Series: J. Phys., 2017, 929, 012030.Google Scholar
- 14.R. S. Bubnova, V. A. Firsova, S. K. Filatov, and S. N. Volkov. Glass Phys. Chem., 2018, 44(1), 33–40.CrossRefGoogle Scholar
- 15.K. Momma and F. Izumi. J. Appl. Crystallogr., 2011, 44, 1272–1276.CrossRefGoogle Scholar
- 16.R. S. Bubnova and S. K. Filatov. Z. Kristallogr., 2013, 228, 395–428.Google Scholar
- 17.R. Diehl and G. Brandt. Acta Crystallogr. Sect. B, 1975, 31, 1662–1665.CrossRefGoogle Scholar
- 18.M. Vithal, R. Jagannathan, and N. Ravi. Bull. Mater. Sci., 1984, 6(1), 33–37.CrossRefGoogle Scholar
- 19.G. K. Wertheim. Mössbauer Effect: Principles and Applications. Academic Press, New York, 1964.Google Scholar
- 20.P. Ehrenfest. Proceed. Royal Acad. Amsterdam, 1933, 36, 153–157.Google Scholar
- 21.P. Atkins. Physical Chemistry. 6th edition, W. H. Freeman and Company, New York, 1998.Google Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018