Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1980–1988 | Cite as

Thermal Expansion of FeBO3 and Fe3BO6 Antiferromagnets Near the Neel Temperature

  • Y. P. BiryukovEmail author
  • S. K. Filatov
  • F. G. Vagizov
  • A. L. Zinnatullin
  • R. S. Bubnova


FeBO3 and Fe3BO6 are antiferromagnets with TN ≈ 348 K and 508 K respectively. This work presents the results of the study of the thermal expansion and phase transitions occurring in these borates by hightemperature X-ray powder diffraction and Mössbauer spectroscopy in a wide temperature range. Unit cell parameters are refined by the Rietveld method at different temperatures. For both compounds an abrupt change in thermal expansion coefficients α is revealed near the magnetic antiferromagnet–paramagnet phase transition.


iron borates antiferromagnets high-temperature X-ray powder diffraction Mössbauer spectroscopy thermal expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Makram, L. Touron, and J. Loriers. J. Crystal Growth., 1972, 13/14, 585–587.Google Scholar
  2. 2.
    R. Diehl. Solid State Commun., 1975, 17, 743–745.CrossRefGoogle Scholar
  3. 3.
    J. G. White, A. Miller, and R. E. Nielsen. Acta Crystallogr., 1965, 19(1), 1060/1061.Google Scholar
  4. 4.
    B. Yu. Sokolov. Techn. Phys., 2006, 51, 589–594.CrossRefGoogle Scholar
  5. 5.
    V. D. Buchel′nikov, N. K. Dan′shin, D. M. Dolgushin, A. I. Izotov, V. G. Shavrov, L. T. Tsymbal, and T. Takagi. Phys. Solid State., 2005, 47(10), 1886–1891.CrossRefGoogle Scholar
  6. 6.
    V. Potapkin, A. I. Chumakov, G. V. Smirnov, J. P. Celse, R. Rüffer, C. McCammon, and L. Dubrovinsky. J. Synchrotron Radiat., 2012, 19, 559–569.CrossRefGoogle Scholar
  7. 7.
    J. Tian, B. Wang, F. Zhao, X. Ma, Y. Liu, H. K. Liu, and Z. Huang. Chem. Commun., 2017, 53, 4698–4701.CrossRefGoogle Scholar
  8. 8.
    R. Wolfe, R. D. Pierce, M. Eibschütz, and J. W. Nielsen. Solid State Commun., 1969, 7, 949–952.CrossRefGoogle Scholar
  9. 9.
    S. Nakamura, T. Mitsui, K. Fujiwara, N. Ikeda, M. Kurokuzu, and S. Shimomura. J. Phys. Soc. Jpn., 2017, 86, 084701–1–084701–5.CrossRefGoogle Scholar
  10. 10.
    T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich. Nature Nanotechn. 2016, 11, 231–241.CrossRefGoogle Scholar
  11. 11.
    T. Saito. J. Phys. Soc. Jpn. 1965, 38(11), 2008/2009.Google Scholar
  12. 12.
    Ya. P. Biryukov, R. S. Bubnova, S. K. Filatov, and A. G. Goncharov. Glass Phys. Chem., 2016, 42(2), 202–206.CrossRefGoogle Scholar
  13. 13.
    A. Zamkovskaya, E. Maksimova, I. Nauhatsky, and M. Shapoval. IOP Conf. Series: J. Phys., 2017, 929, 012030.Google Scholar
  14. 14.
    R. S. Bubnova, V. A. Firsova, S. K. Filatov, and S. N. Volkov. Glass Phys. Chem., 2018, 44(1), 33–40.CrossRefGoogle Scholar
  15. 15.
    K. Momma and F. Izumi. J. Appl. Crystallogr., 2011, 44, 1272–1276.CrossRefGoogle Scholar
  16. 16.
    R. S. Bubnova and S. K. Filatov. Z. Kristallogr., 2013, 228, 395–428.Google Scholar
  17. 17.
    R. Diehl and G. Brandt. Acta Crystallogr. Sect. B, 1975, 31, 1662–1665.CrossRefGoogle Scholar
  18. 18.
    M. Vithal, R. Jagannathan, and N. Ravi. Bull. Mater. Sci., 1984, 6(1), 33–37.CrossRefGoogle Scholar
  19. 19.
    G. K. Wertheim. Mössbauer Effect: Principles and Applications. Academic Press, New York, 1964.Google Scholar
  20. 20.
    P. Ehrenfest. Proceed. Royal Acad. Amsterdam, 1933, 36, 153–157.Google Scholar
  21. 21.
    P. Atkins. Physical Chemistry. 6th edition, W. H. Freeman and Company, New York, 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. P. Biryukov
    • 1
    Email author
  • S. K. Filatov
    • 2
  • F. G. Vagizov
    • 3
  • A. L. Zinnatullin
    • 3
  • R. S. Bubnova
    • 1
    • 2
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Kazan Federal UniversitySt. PetersburgRussia

Personalised recommendations