Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1960–1966 | Cite as

Comparison of Standard Functionals to Calculate the Properties of Molecules at the Variational Limit

  • V. V. TurovtsevEmail author
  • Yu. D. Orlov
  • I. A. Kaplunov
Article
  • 5 Downloads

Abstract

B1LYP, B1PW91, B3LYP, BHandH, BHandHLYP, BLYP, BP, CAMY-B3LYP, HTBS, KMLYP, LCYBLYP, LCY-BP86, LCY-PBE, LDA, M06, M06-2X, M06-HF, M06L, mPBE, mPW, MPW1K, MPW1PW, O3LYP, OLYP, OPBE, OPBE0, PBE, PBE0, PBEsol, PW91, revPBE, revTPSS, RPBE, TPSS, TPSSH, X3LYP, and HF methods are used to calculate the electron energy Eel of the reference GeO and C2H6 compounds in Slater basis sets QZ4P, aug-TZ2P, and TZ2P, as well as DZ for C2H6. The Eel values are recalculated into the bond breaking enthalpy D0(Ge–O) and formation enthalpy ΔfH2980 of ethane, and calculation errors for Eel are obtained at the variation limit. The ADF program settings are chosen so that they make it possible to attribute these Eel errors to the structure of DFT functionals. The dependence of the Eel values on the type (size) of the basis set is studied. It is demonstrated that when Eel is calculated for GeO, the optimum combination is DFT/TZ2P, where DFT = LCY-BLYP, LCY-BP86, LCY-PBE, CAMYB3LYP; for C2H6 it is DFT/TZ2P, where DFT = PBE0, M06, mPBE, OLYP. Errors in the calculation of the geometric parameters are studied.

Keywords

Slater basis set electron energy formation enthalpy bond dissociation enthalpy inaccuracies of exchange-correlation potentials variation limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Koch and M. C. Holthausen. A Chemist′s Guide to Density Functional Theory. 2–nd ed. Weinheim: Wiley–VCH Verlag GmbH, 2001, 293.CrossRefGoogle Scholar
  2. 2.
    L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople. J. Chem. Phys., 1998, 109(1), 42–55.CrossRefGoogle Scholar
  3. 3.
    L. A. Curtiss, P. C. Redfern, and K. Raghavachari. J. Chem. Phys., 2005, 123, 124107.CrossRefGoogle Scholar
  4. 4.
    G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, and T. Ziegler. J. Comput. Chem., 2001, 22(9), 931–967.CrossRefGoogle Scholar
  5. 5.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders. J. Chem. Phys., 1993, 99, 4597–4611.CrossRefGoogle Scholar
  6. 6.
    L. H. Thomas. Proc. Camb. Phil. Soc., 1927, 23, 542–548.CrossRefGoogle Scholar
  7. 7.
    E. Fermi. Rend. Accad. Naz. Lincei., 1927, 6, 602–607.Google Scholar
  8. 8.
    Thermal Constants of Substances. http://www.chem.msu.ru/cgi–bin/tkv.pl?show=welcome.html.Google Scholar
  9. 9.
    В. В. Turovtsev. Physical and Mathematical Sciences Doctor’s Dissertation. Tver: TvGU, 2014, 373.Google Scholar
  10. 10.
    G. A. Thompson, A. G. Maki, and A. Weber. J. Mol. Spectr., 1986, 116, 136–142.CrossRefGoogle Scholar
  11. 11.
    M. Seth and T. Ziegler. J. Chem. Theor. Comput., 2012, 8, 901–907.CrossRefGoogle Scholar
  12. 12.
    NIST Scientific and Technical Databases. http://webbook.nist.gov/chemistry.Google Scholar
  13. 13.
    K. Huber and G. Herzberg. Molecular Spectra and Molecular Structure. IV. Van Nostrand. Princeton. 1979.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Turovtsev
    • 1
    • 2
    Email author
  • Yu. D. Orlov
    • 1
  • I. A. Kaplunov
    • 1
  1. 1.Tver State UniversityMoscowRussia
  2. 2.Tver State Medical UniversityMoscowRussia

Personalised recommendations