Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1922–1927 | Cite as

Crystal Structure and Luminescence of a Novel Binuclear Zinc(II) Complex with Di-2-Pyridylamine And 4,4′-Sulfonyldibenzoate

  • C. Yuan
  • S. N. Liu
  • X. J. XuEmail author
Article
  • 9 Downloads

Abstract

A binuclear Zn(II) complex [Zn2(SDBA)2(DPA)2.2H2O] (1) (DPA = di-2-pyridylamine, H2SDBA = 4,4′- sulfonyldibenzoic acid) is synthesized and characterized using single crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The single crystal X-ray diffraction analysis reveals that complex 1 is a binuclear zinc(II) complex. The binuclear molecules are further connected by three types of N–H...O, C–H...O, and O–H...O hydrogen bonds, generating a three-dimensional supramolecular structure. Meanwhile, S–O...π interactions further consolidate the three-dimensional supramolecular framework of 1. In addition, the thermal stability and luminescent properties of the title complex are briefly investigated. The luminescence measurements reveal that complex 1 exhibits fluorescent emission in the solid state at room temperature.

Keywords

Zn(II) complex di-2-pyridylamine 4,4′-sulfonyldibenzoic acid crystal structure luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Allendorf, C. A. Bauer, R. K. Bhaktaa, et al. Chem. Soc. Rev., 2009, 38, 1330–1352.CrossRefGoogle Scholar
  2. 2.
    Y. J. Mu, J. H. Fu, Y. J. Song, et al. Cryst. Growth Des., 2011, 11, 2183–2193.CrossRefGoogle Scholar
  3. 3.
    S. G. Ghosh, J. P. Zhang, and S. Kitagawa. Angew. Chem., Int. Ed., 2007, 46, 7965–7968.CrossRefGoogle Scholar
  4. 4.
    J. R. Lia, Y. Ma, M. C. McCarthy, et al. Coord. Chem. Rev., 2011, 255, 1791–1823.CrossRefGoogle Scholar
  5. 5.
    S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, et al. Dalton Trans., 2011, 40, 2196–2203.CrossRefGoogle Scholar
  6. 6.
    M. O′Keeffe and O. M. Yaghi. Chem. Rev., 2012, 112, 675–702.CrossRefGoogle Scholar
  7. 7.
    P. Ren, W. Shi, and P. Cheng. Cryst. Growth Des., 2008, 8, 1097–1099.CrossRefGoogle Scholar
  8. 8.
    Y. Cui, Y. Yue, G. Qian, et al. Chem. Rev., 2012, 112, 1126–1162.CrossRefGoogle Scholar
  9. 9.
    Y. Suenaga, S. G. Yan, L. P. Wu, et al. J. Chem. Soc., Dalton Trans., 1998, 1121–1125.Google Scholar
  10. 10.
    Z. B. Han, X. N. Cheng, and X. M. Chen. Cryst. Growth Des., 2005, 5, 695–700.CrossRefGoogle Scholar
  11. 11.
    L. F. Ma, L. Y. Wang, J. L. Hu, et al. Cryst. Growth Des., 2009, 9, 5334–5342.CrossRefGoogle Scholar
  12. 12.
    V. A. Blatov, M. O′Keeffe, and D. M. Proserpio. CrystEngComm, 2010, 12, 44–48.CrossRefGoogle Scholar
  13. 13.
    B. Li, Y. Zhang, G. Li, et al. Cryst. Growth Des., 2011, 13, 2457–2465.Google Scholar
  14. 14.
    Y.–X. Zhang, J. Yang, W.–Q. Kan, et al. CrystEngComm, 2012, 14, 6004–6015.CrossRefGoogle Scholar
  15. 15.
    G.–X. Liu, K. Zhu, H.–M. Xu, et al. CrystEngComm, 2010, 12, 1175–1185.CrossRefGoogle Scholar
  16. 16.
    R. Łyszczek and L. Mazur. Inorg. Chem. Commun., 2012, 15, 121–125.CrossRefGoogle Scholar
  17. 17.
    J. Wang, J.–Q. Tao, X.–J. Xu, et al. Bull. Korean Chem. Soc., 2012, 33, 3827–3830.CrossRefGoogle Scholar
  18. 18.
    D. Wu, W. Meng, L. Zhang, et al. Inorg. Chim. Acta, 2013, 405, 318–325.CrossRefGoogle Scholar
  19. 19.
    Z.–Q. Shi, Y.–Z. Li, Z.–J. Guo, et al. Cryst. Growth Des., 2013, 13, 3078–3086.CrossRefGoogle Scholar
  20. 20.
    A. M. Plonka, D. Banerjee, W. R. Woerner, et al. Chem. Commun., 2013, 49, 7055–7057.CrossRefGoogle Scholar
  21. 21.
    C.–T. Yeh, W.–C. Lin, S.–H. Lo, et al. CrystEngComm, 2012, 14, 1219–1222.CrossRefGoogle Scholar
  22. 22.
    L. Liu, C. Huang, Z. Wang, et al. CrystEngComm, 2013, 15, 7095–7105.CrossRefGoogle Scholar
  23. 23.
    G. M. Sheldrick. SADABS, An empirical absorption correction program. Madison, WI, Bruker Analytical X–ray Systems, 1996.Google Scholar
  24. 24.
    G. M. Sheldrick. SHELXL–97, Program for refinement of crystal structures. University of Göttingen, Germany, 1997.Google Scholar
  25. 25.
    R.–Y. Huang, C. Xue, Z.–Q. Wang, et al. Inorg. Chim. Acta, 2013, 405, 302–308.CrossRefGoogle Scholar
  26. 26.
    L. Qin, J. Hu, M. Zhang, et al. Cryst. Growth Des., 2013, 13, 2111–2117.CrossRefGoogle Scholar
  27. 27.
    A. L. Spek. PLATON, A Multipurpose Crystallographic Tool. Utrecht University: Utrecht, 1998.Google Scholar
  28. 28.
    L. L. Wen, Y. Z. Li, Z. D. Lu, et al. Cryst. Growth Des., 2006, 6, 530–537.CrossRefGoogle Scholar
  29. 29.
    J. G. Lin, S. Q. Zang, Z. F. Tian, et al. CrystEngComm., 2007, 9, 915–921.CrossRefGoogle Scholar
  30. 30.
    Y. Yang, P. Du, J. F. Ma, et al. Cryst. Growth Des., 2011, 11, 5540–5553.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringYancheng Teachers University, YanchengJiangsuP. R. China

Personalised recommendations