Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1903–1910 | Cite as

Bond Order Indices of Iodine: From Molecular Complexes to Crystals

  • S. E. MukhitdinovaEmail author
  • E. V. Bartashevich
  • V. G. Tsirelson
Article
  • 8 Downloads

Abstract

A quantitative model to estimate bond order indices in molecular crystals is proposed for the bound iodine atom I–X/I…X, where X = I, N, S. The model is based on a quantitative relationship between electron delocalization indices and bond orders. The correlations of bond orders with electronic potential and kinetic energy densities at bond critical points are found for molecular complexes and the applicability of parametric equations for molecular crystals is verified. The capacity and limitations of the models are shown.

Keywords

iodine bond order indices electron delocalization indices halogen bonds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_1079_MOESM1_ESM.pdf (85 kb)
Supplementary material, approximately 85 KB.

References

  1. 1.
    R. F. W. Bader and M. E. Stephens. J. Am. Chem. Soc., 1975, 97(26), 7391.CrossRefGoogle Scholar
  2. 2.
    X. Fradera, M. A. Austen, and R. F. W. Bader. J. Phys. Chem. A, 1999, 103(2), 304.CrossRefGoogle Scholar
  3. 3.
    E. V. Bartashevich, E. A. Grigoreva, I. D. Yushina, L. M. Bulatova, and V. G. Tsirelson. Russ. Chem. B, 2017, 66(8), 1345.CrossRefGoogle Scholar
  4. 4.
    G. J. Corban, S. K. Hadjikakou, N. Hadjiliadis, M. Kubicki, E. R. T. Tiekink, I. S. Butler, E. Drougas, and A. M. Kosmas. Inorg. Chem., 2005, 44(23), 8617.CrossRefGoogle Scholar
  5. 5.
    S. Mehta, J. P. Waldo, and R. C. Larock. J. Org. Chem., 2009, 74(3), 1141.CrossRefGoogle Scholar
  6. 6.
    G. Cavallo, G. Terraneo, A. Monfredini, M. Saccone, A. Priimagi, T. Pilati, G. Resnati, P. Metrangolo, and D. W. Bruce. Angew Chem. Int. Ed., 2016, 55(21), 6300.CrossRefGoogle Scholar
  7. 7.
    H. L. Nguyen, P. N. Horton, M. B. Hursthouse, A. C. Legon, and D. W. Bruce. J. Am. Chem. Soc., 2004, 126(1), 16.CrossRefGoogle Scholar
  8. 8.
    H. M. Yamamoto, Y. Kosaka, R. Maeda, J. Yamaura, A. Nakao, T. Nakamura, and R. Kato. ACS Nano, 2008, 2(1), 143.CrossRefGoogle Scholar
  9. 9.
    H. M. Yamamoto, J. I. Yamaura, and R. Kato. Synth. Met., 1999, 102(1–3), 1448.Google Scholar
  10. 10.
    R. F. W. Bader. Acc. Chem. Res., 1985, 18(1), 9.CrossRefGoogle Scholar
  11. 11.
    C. F. Matta and R. J. Boyd. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley–VCH: Weinheim, 2007.CrossRefGoogle Scholar
  12. 12.
    P. Maxwell and P. L. A. Popelier. Mol. Phys., 2016, 114(7–8), 1304.Google Scholar
  13. 13.
    P. L. A. Popelier. Struct. Bond., 2016, 170, 71.CrossRefGoogle Scholar
  14. 14.
    R. F. W. Bader. Atoms in molecules: a quantum theory; Clarendon Press: Oxford; New York, 1990.Google Scholar
  15. 15.
    K. B. Wiberg. Tetrahedron, 1968, 24(3), 1083.CrossRefGoogle Scholar
  16. 16.
    J. L. Jules and J. R. Lombardi. J. Mol. Struct.: THEOCHEM, 2003, 664, 255.CrossRefGoogle Scholar
  17. 17.
    L. Pauling. The Nature of the Chemical Bond. Ithaca, NY: Cornell University Press, 1960.Google Scholar
  18. 18.
    C. F. Matta and J. Hernandez–Trujillo. J. Phys. Chem. A, 2003, 107(38), 7496.CrossRefGoogle Scholar
  19. 19.
    C. F. Matta and J. Hernandez–Trujillo. J. Phys. Chem. A, 2005, 109(47), 10798.CrossRefGoogle Scholar
  20. 20.
    R. F. W. Bader, T. S. Slee, D. Cremer, and E. Kraka. J. Am. Chem. Soc., 1983, 105(15), 5061.CrossRefGoogle Scholar
  21. 21.
    P. L. A. Popelier. Atoms in Molecules: An Introduction. Prentice Hall: London, 2000.CrossRefGoogle Scholar
  22. 22.
    C. F. Matta. J. Comput. Chem., 2014, 35(16), 1165.CrossRefGoogle Scholar
  23. 23.
    I. Sumar, P. W. Ayers, and C. F. Matta. Chem. Phys. Lett.., 2014, 612, 190.CrossRefGoogle Scholar
  24. 24.
    M. J. Timm, C. F. Matta, L. Massa, and L. L. Huang. J. Phys. Chem. A, 2014, 118(47), 11304.CrossRefGoogle Scholar
  25. 25.
    C. F. Matta. Future Med. Chem., 2014, 6(13), 1475.CrossRefGoogle Scholar
  26. 26.
    I. Sumar, R. Cook, P. W. Ayers, and C. F. Matta. Phys. Scr., 2015, 91(1), 013001.CrossRefGoogle Scholar
  27. 27.
    C. L. Firme, O. A. C. Antunes, and P. M. Esteves. Chem. Phys. Lett., 2009, 468(4–6), 129.Google Scholar
  28. 28.
    A. I. Baranov and M. Kohout. J. Comput. Chem., 2011, 32(10), 2064.CrossRefGoogle Scholar
  29. 29.
    J. Cioslowski and S. T. Mixon. J. Am. Chem. Soc., 1991, 113(11), 4142.CrossRefGoogle Scholar
  30. 30.
    S. T. Howard and O. Lamarche. J. Phys. Org. Chem., 2003, 16(2), 133.CrossRefGoogle Scholar
  31. 31.
    E. A. Zhurova, A. I. Stash, V. G. Tsirelson, V. V. Zhurov, E. V. Bartashevich, V. A. Potemkin, and A. A. Pinkerton. J. Am. Chem. Soc., 2006, 128(45), 14728.CrossRefGoogle Scholar
  32. 32.
    V. G. Tsirelson, E. V. Bartashevich, A. I. Stash, and V. A. Potemkin. Acta Crystallogr. B, 2007, 63, 142.CrossRefGoogle Scholar
  33. 33.
    E. V. Bartashevich, D. K. Nikulov, M. V. Vener, and V. G. Tsirelson. Comput. Theor. Chem., 2011, 973(1–3), 33.Google Scholar
  34. 34.
    G. R. Desiraju and R. Parthasarathy. J. Am. Chem. Soc., 1989, 111(23), 8725.CrossRefGoogle Scholar
  35. 35.
    G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, and K. Rissanen. Pure Appl. Chem., 2013, 85(8), 1711.CrossRefGoogle Scholar
  36. 36.
    F. R. Knight, A. L. Fuller, M. Buhl, A. M. Z. Slawin, and J. D. Woollins. Inorg. Chem., 2010, 49, 7577.CrossRefGoogle Scholar
  37. 37.
    P. R. Birkett, C. Christides, P. B. Hitchcock, H. W. Kroto, K. Prassides, R. Taylor, and D. R. M. Walton. J. Chem. Soc. Perkin Trans., 1993, 2, 1407.CrossRefGoogle Scholar
  38. 38.
    C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. Acta Crystallogr. B, 2016, 72, 171.CrossRefGoogle Scholar
  39. 39.
    M. Reiher. Wires Comput. Mol. Sci, 2012, 2(1), 139.CrossRefGoogle Scholar
  40. 40.
    A. A. Granovsky. Firefly, Version 8.0.1. http://classic.chem/msu.su/gran/gamess/index.htmlGoogle Scholar
  41. 41.
    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich–Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D′Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman. Int J. Quant. Chem., 2014, 114(19), 1287.CrossRefGoogle Scholar
  42. 42.
    T. A. Keith. AIMAll, Version 15.09.27, 2015. Professional. http://aim.tkgristmill.com/index.htmlGoogle Scholar
  43. 43.
    C. Gatti and S. Casassa. Topond14. User′s Manual. 2016.Google Scholar
  44. 44.
    E. V. Bartashevich, E. A. Troitskaya, and V. G. Tsirelson. Chem. Phys. Lett., 2014, 601, 144.CrossRefGoogle Scholar
  45. 45.
    R. F. W. Bader and P. M. Beddall. J. Chem. Phys., 1972, 56(7), 3320.CrossRefGoogle Scholar
  46. 46.
    E. Bartashevich, I. Yushina, K. Kropotina, S. Muhitdinova, and V. Tsirelson. Acta Crystallogr. B, 2017, 73, 217.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. E. Mukhitdinova
    • 1
    Email author
  • E. V. Bartashevich
    • 1
  • V. G. Tsirelson
    • 1
    • 2
  1. 1.South-Ural State UniversityChelyabinskRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations