Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1849–1857 | Cite as

Using Xps Data for Determining Spatial Distribution of Metals in Bimetallic Particles Supported on a Flat Surface

  • M. Yu. Smirnov
  • A. V. Kalinkin
  • V. I. Bukhtiyarov
Article

Abstract

Expressions are obtained for the intensities of photoemission lines of silver and gold in bimetallic particles formed during sequential deposition of metals on the flat surface of the support. Two cases are considered: bimetallic particles with a non-uniform distribution of metals (silver core covered with a gold shell) and alloy particles of uniform composition. The particle shapes are assumed to be hemispherical. Expressions were obtained for the photoemission lines of gold Au4f, Au3d3/2 and silver Ag3d as well as for the Auger line of silver AgMVV recorded using radiation AlKα ( = 1486.6 eV) and AgLα (hν = 2983.4 eV). Gold shells on the surface of silver particles are shown to diminish the intensity ratio of AgMVV line to Ag3d line, and this effect becomes stronger with the increasing ratio γ of gold atoms to silver atoms. In the case of alloy particles Ag–Au, the intensity ratio of these lines also decreases with increasing γ, though to a much lesser extent. The intensity ratios of gold Au4f and Au3d3/2 lines to the silver Ag3d line are also considered. The obtained equations can be used in XPS studies to consider formation of bimetallic particles in model planar systems and the changes occurring with the particles as a result of heat treatment in a vacuum or in a reaction medium.

Keywords

silver gold bimetallic particles core–shell structure X-ray photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ferrando, J. Jellinek, and R. L. Johnston. Chem. Rev., 2008, 108, 845.CrossRefGoogle Scholar
  2. 2.
    H.–L. Jiang and Q. Xu. J. Mater. Chem., 2011, 21, 13705.CrossRefGoogle Scholar
  3. 3.
    J.–H. Liu, A.–Q. Wang, Y.–S. Chi, H.–P. Lin, and C.–Y. Mou. J. Phys. Chem. B, 2005, 109, 40.CrossRefGoogle Scholar
  4. 4.
    H.–L. Jiang, T. Akita, T. Ishida, M. Haruta, and Q. Xu. J. Am. Chem. Soc., 2011, 133, 1304.CrossRefGoogle Scholar
  5. 5.
    K. K. Haldar, S. Kundu, and A. Patra. ACS Appl. Mater. Interfaces, 2014, 21, 21946.CrossRefGoogle Scholar
  6. 6.
    Y.–H. Sun, M. Zhang, F. Dong, and J.–J. Yang. Res. Chem. Intermed., 2009, 35, 817.CrossRefGoogle Scholar
  7. 7.
    S. Tokonami, N. Morita, K. Takasaki, and N. Toshima. J. Phys. Chem. C, 2010, 114, 10336.CrossRefGoogle Scholar
  8. 8.
    H. Zhang, J. Okuni, and N. Toshima. J. Colloid Interface Sci., 2011, 354, 131.CrossRefGoogle Scholar
  9. 9.
    A. K. Santra, F. Yang, and D. W. Goodman. Surf. Sci., 2004, 548, 324.CrossRefGoogle Scholar
  10. 10.
    M. Yu. Smirnov, A. V. Kalinkin, A. V. Bukhtiyarov, I. P. Prosvirin, and V. I. Bukhtiyarov. J. Phys. Chem. C, 2016, 120, 10419.CrossRefGoogle Scholar
  11. 11.
    X. Lai and D. W. Goodman. J. Mol. Catal. A, 2000, 162, 33.CrossRefGoogle Scholar
  12. 12.
    C. C. Chusuei, X. Lai, K. Luo, and D. W. Goodman. Top. Catal., 2001, 14, 71.CrossRefGoogle Scholar
  13. 13.
    S. M. Davis. J. Catal., 1989, 117, 432.CrossRefGoogle Scholar
  14. 14.
    S. Shinotsuka, S. Tanuma, C. J. Powell, and D. R. Penn. Surf. Interface Anal., 2015, 47, 871.CrossRefGoogle Scholar
  15. 15.
    J. G. Speight. Lange′s Handbook of Chemistry. 16th Ed. USA, N.Y.: McGrows Hill, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Yu. Smirnov
    • 1
  • A. V. Kalinkin
    • 1
  • V. I. Bukhtiyarov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations