Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1768–1775 | Cite as

A Quantum Chemical Simulation of the Interaction Between Leucine and the Dimer of Sodium Dodecyl Sulphate

  • N. I. GirichevaEmail author
  • M. S. Kurbatova
  • E. Yu. Tyunina
  • V. P. Barannikov
Article
  • 8 Downloads

Abstract

Complexes formed by leucine (Leu) and the dimer of sodium dodecyl sulfate (DDSNa)2 are studied by the quantum chemical method DFT using the hybrid exchange-correlation functional B97 with Grimme's dispersion correction D2 and the 6-311++G(2d,2p) basic set. The complexes formed by Leu and the dimer of DDSNa (considered as a micelle fragment) are studied in terms of their spatial structures and the energies of intermolecular interactions ЕIMI, depending on the penetration depth of Leu inside the micelle model. The highest energy ЕIMI is exhibited by the complex formed by the zwitterionic form of the amino acid and the hydrophilic part of sodium dodecyl sulfate. When the hydrophilic environment is replaced by the hydrophobic one, the intramolecular hydrogen bond in the amino acid changes in terms of its type and strength: N–H…O (weak) → N…H…O (strong) → N…O–H (weak). The energies of frontier orbitals and, therefore, redox properties of leucine also undergo changes in the course of the process.

Keywords

amino acid leucine dimer of sodium dodecyl sulfate complexes quantum chemical calculations DFT geometric and energy characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antimicrobial Peptides: Methods and Protocols / Ed. by A. Giuliani and A. C. Rinaldi. USA, New York: Humana Press, 2010.Google Scholar
  2. 2.
    M. R. Bozorgmehr, M. Saberi, and H. Chegini. J. Mol. Liq., 2014, 199, 184.CrossRefGoogle Scholar
  3. 3.
    I. Yu. Ponedel′kina, V. N. Odinokov, E. S. Vakhrusheva, M. T. Golikova, L. M. Khalilov, and U. M. Dzhemilev. Russ. J. Bioorg. Chem., 2005, 31, 82.CrossRefGoogle Scholar
  4. 4.
    Y. Ding, Y. Shu, L. Ge, and R. Guo. Colloids Surf., A, 2007, 298, 163–169.CrossRefGoogle Scholar
  5. 5.
    Z. Liu, X. Guo, Z. Feng, and L. Jia. J. Solution Chem., 2015, 44, 293.CrossRefGoogle Scholar
  6. 6.
    H. D. Thaker, F. Sgolastra, D. Clements, R. W. Scott, and G. N. Tew. J. Med. Chem., 2011, 54, 2241.CrossRefGoogle Scholar
  7. 7.
    I. M. Yermak and V. N. Davydova. Biochemistry (Moscow) supplement. Series A: Membrane and cell biology., 2008, 2(4), 279.CrossRefGoogle Scholar
  8. 8.
    V. V. Andrushchenko, H. J. Vogel, and E. J. Prenner. Biochim. Biophys. Acta, 2007, 1768, 2447.CrossRefGoogle Scholar
  9. 9.
    S. R. Dennison, J. Wallace, F. Harris, and D. A. Phoenix. Protein Pept. Lett., 2005, 12, 31.CrossRefGoogle Scholar
  10. 10.
    A. Ali, N. A. Malik, and S. Uzair. Mol. Phys., 2014, 112, 2681.CrossRefGoogle Scholar
  11. 11.
    M. S. Hossain, T. K. Biswas, and D. C. Kabiraz. J. Chem. Thermodyn., 2014, 71, 6.CrossRefGoogle Scholar
  12. 12.
    B. Z. Idiyatullin, Y. F. Zuev, K. S. Potarikina, O. G. Us′yarov, and O. S. Zueva. Colloid J., 2013, 75, 532.CrossRefGoogle Scholar
  13. 13.
    L. Zhu, Y. Han, M. Tian, and Y. Wang. Langmuir, 2013, 29, 12084.CrossRefGoogle Scholar
  14. 14.
    S. V. Shilova, A. Y. Tret′yakova, and V. P. Barabanov. Russ. J. Phys. Chem. A, 2016, 90, 95.CrossRefGoogle Scholar
  15. 15.
    Z. Yan, Q. Zhang, W.–W. Li, and J. Wang. J. Chem. Eng. Data, 2010, 55, 3560.CrossRefGoogle Scholar
  16. 16.
    R. Saeed, M. Usman, A. Mansha, N. Rasool, S. A. R. Naqvi, A. F. Zahoor, H. M. A. Rahman, U. A. Rana, and E. Al–Zahrani. Colloids Surf. A, 2017, 512, 51.CrossRefGoogle Scholar
  17. 17.
    V. G. Badelin, I. N. Mezhevoi, and E. Yu. Tyunina. Russ. J. Phys. Chem. A., 2017, 91(3), 523.Google Scholar
  18. 18.
    V. G. Badelin, E. Yu. Tyunina, and G. N. Tarasova. Zh. Fiz. Khim., 2017, 91(5), 862.Google Scholar
  19. 19.
    V. I. Smirnov and V. G. Badelin. J. Phys. Chem. A., 2017, 91, 1681.Google Scholar
  20. 20.
    S. V. Efimov, F. Kh. Karataeva, A. V. Aganov, S. Berger, and V. V. Klochkov. J. Mol. Struct., 2013, 1036, 298.CrossRefGoogle Scholar
  21. 21.
    I. Z. Rakhmatullin, L. F. Galiullina, E. A. Klochkova, I. A. Latfullin, A. V. Aganov, and V. V. Klochkov. J. Mol. Struct., 2016, 1105, 25.CrossRefGoogle Scholar
  22. 22.
    V. G. Zavodinskiy, A. A. Gnidenko, V. N. Davidova, and I. M. Ermak. Butlerov Comm., 2003, 4(2), 11.Google Scholar
  23. 23.
    D. E. Nolde, P. E. Volynskii, A. S. Arseniev, and R. G. Efremov. Russ. J. Bioorg. Chem., 2000, 26, 115.CrossRefGoogle Scholar
  24. 24.
    A. S. Khamidullina, I. V. Vakulin, R. F. Talipov, and I. S. Shepelevich. J. Struct. Chem., 2005, 46(6), 985.CrossRefGoogle Scholar
  25. 25.
    Z. Qiu, Y. Xia, H. Wang, and K. Diao. J. Struct. Chem., 2011, 52(3), 462.CrossRefGoogle Scholar
  26. 26.
    N. I. Giricheva, M. S. Kurbatova, E. Yu. Tyunina, and V. G. Badelin. J. Struct. Chem., 2017, 58(8), 1604.CrossRefGoogle Scholar
  27. 27.
    B. Tah, P. Pal, S. Roy, D. Dutta, S. Mishra, M. Ghosh, and G. B. Talapatra. Spectrochim. Acta, Part A, 2014, 129, 345.CrossRefGoogle Scholar
  28. 28.
    J. P. Marcolongo and M. Mirenda. J. Chem. Educ., 2011, 88, 629.CrossRefGoogle Scholar
  29. 29.
    B. Ch. Deka and P. Kr. Bhattacharyya. Comput. Theor. Chem., 2017, 1110, 40.CrossRefGoogle Scholar
  30. 30.
    H.–D. Jakubke and H. Jeschkeit. Aminosäuren, Peptide, Proteine. Berlin, Akademie–Verlag, 1982.Google Scholar
  31. 31.
    S. Adhikari and T. Kar. J. Cryst. Growth., 2012, 356, 4.CrossRefGoogle Scholar
  32. 32.
    V. Yu. Kurochkin, V. V. Chernikov, and T. D. Orlova. Russ. J. Phys. Chem. A., 2011, 85, 598.CrossRefGoogle Scholar
  33. 33.
    A. K. Rai, X. Xu, Z. Lin, and D. K. Rai. Vib. Spectrosc., 2011, 56, 74.CrossRefGoogle Scholar
  34. 34.
    N. A. Akhmedov, L. I. Ismailova, R. M. Abbasli, N. F. Akhmedov, and N. M. Godjaev. Russ. J. Bioorg. Chem., 2005, 31, 27.CrossRefGoogle Scholar
  35. 35.
    S. G. Stepanian, A. Yu. Ivanov, and L. Adamowicz. Chem. Phys., 2013, 423, 20.CrossRefGoogle Scholar
  36. 36.
    A. D. Becke. J. Chem. Phys., 1997, 107, 8554.CrossRefGoogle Scholar
  37. 37.
    S. Grimme. J. Comp. Chem., 2006, 27, 1787.CrossRefGoogle Scholar
  38. 38.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.CrossRefGoogle Scholar
  39. 39.
    M. J. Frisch, G. W. Truck, H. B. Schlegel, et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.Google Scholar
  40. 40.
    F. Weinhold and C. R. Landis. Chem. Educ. Res. Pract. Eur., 2001, 2, 91.CrossRefGoogle Scholar
  41. 41.
    N. V. Usol’tseva, А. I. Smirnova, N. V. Zharnikova, M. S. Kurbatova, N. I. Giricheva, and V. G. Badelin. Liq. Cryst. Their Appl., 2016, 16(2), 70.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. I. Giricheva
    • 1
    Email author
  • M. S. Kurbatova
    • 2
  • E. Yu. Tyunina
    • 2
  • V. P. Barannikov
    • 2
  1. 1.Ivanovo State UniversityMoscowRussia
  2. 2.Institute of Solution ChemistryRASIvanovoRussia

Personalised recommendations