Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1744–1752 | Cite as

Ion Conducting Behavior of Silsesquioxane-Based Materials Used in Fuel Cell and Rechargeable Battery Applications

  • A. C. KucukEmail author


The worldwide energy demand is expected to be double of the current consumption in the near future. This huge energy demand increases the importance of energy conversion and storage devices. A fuel cell needs an electrolyte which can be used under high temperature conditions for increasing the system efficiency. In the case of rechargeable batteries, the ion-conducting properties of the electrolyte should possess long-term sustainability. However, available electrolytes for a fuel cell can efficiently work only at temperatures below 100 °C. On the other hand, commercially used electrolytes are usually liquids and may cause serious leakage and safety problems, thus their sustainability is limited for Li-ion battery applications. Although their ionic conductivities are relatively low, solid and gel type electrolytes are safer and therefore become more favorable. More recently, compatible hybrid organic-inorganic polyhedral oligomeric silsesquioxane (POSS) derivatives have attracted much attention of researchers in order to obtain solid or gel type electrolytes. These materials combine the intrinsic mechanical and thermal properties owing to the inorganic core and the compatibility owing to the organic coronae. Therefore POSS derivatives are a promising family that can allow the design of alternative energetic materials. Here, the objective is to increase the awareness of the role of POSS-based materials for fuel cell and rechargeable battery applications.


silsesquioxane electrolyte fuel cell Li-ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Scrosati and J. Garche. J. Power Sources, 2010, 195, 2419–2430CrossRefGoogle Scholar
  2. 2.
    A. Richard, N. Clarke Robert, J. Stavins, L. L. Greeno Joan, B. F. Cairncross, Daniel, E. B. Smart, and J. P. Richard. Wells Rob Gray Kurt Fischer Johan Schot, The Challenge of Going Green, Harward Business Review, July-August 1994, Issue.Google Scholar
  3. 3.
    S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. T. Lau, and J. H. Lee. Prog. Polym. Sci., 2011, 36, 813–843.CrossRefGoogle Scholar
  4. 4.
    J. W. Fergus. J. Power Sources, 2010, 195, 4554–4569.CrossRefGoogle Scholar
  5. 5.
    R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz. Fuel cell fundamentals. New Jersey: John Wiley & Sons, 2005.Google Scholar
  6. 6.
    J. Larminie and A. Dicks. Fuel cell systems explained. 2nd ed. England: John Wiley & Sons, 2003.CrossRefGoogle Scholar
  7. 7.
    J. B. Goodenough and Y. Kim. Chem. Mater., 2010, 22, 587–603.CrossRefGoogle Scholar
  8. 8.
    J.-M. Tarascon and M. Armand. Nature, 2001, 414, 359–367.CrossRefGoogle Scholar
  9. 9.
    N. S. Choi, Z. Chen, S. A. Frruenberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce. Angew. Chem., Int. Ed., 2012, 51, 9994–10024.CrossRefGoogle Scholar
  10. 10.
    G. Alberti and M. Casciola. Annu. Rev. Mater. Res., 2003, 33, 129–54.CrossRefGoogle Scholar
  11. 11.
    J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, and T. Navessin. J. Power Sources, 2006, 160, 872–91.CrossRefGoogle Scholar
  12. 12.
    A. Verma and K. Scott. J. Solid State Electrochem., 2008, 14, 213–9.CrossRefGoogle Scholar
  13. 13.
    W. Liu, K. Ruth, G. Rusch. J. New Mater. Electrochem. Syst., 2001, 4, 227–32.Google Scholar
  14. 14.
    M. Rikukawa and K. Sanui. Prog. Polym. Sci., 2000, 25, 1463–502.CrossRefGoogle Scholar
  15. 15.
    Y. Yin, J. Fang, Y. Cui, K. Tanaka, H. Kita, and K. Okamoto. Polymer, 2003, 44, 4509–4518.CrossRefGoogle Scholar
  16. 16.
    Y.-Z. Fu and A. Manthiram. J. Power Sources, 2006, 157, 222–225.CrossRefGoogle Scholar
  17. 17.
    W. Qian, Y. Shang, M. Fang, S. Wang, X. Xie, J. Wang, W. Wang, J. Du, Y. Wang, and Z. Mao. Int. J. Hydrogen Energy, 2012, 37, 12919–12924.CrossRefGoogle Scholar
  18. 18.
    K. Hu, T. Xu, W. Yang, and Y. Fu. J. Appl. Polym. Sci., 2004, 91, 167–174.CrossRefGoogle Scholar
  19. 19.
    K. Xu and P. C. Whether. J. Electrochem. Soc., 2009, 156, A751–A755.CrossRefGoogle Scholar
  20. 20.
    P. Verma, P. Maire, and P. Novak. Electrochim. Acta, 2010, 55, 6332–6341.CrossRefGoogle Scholar
  21. 21.
    J. D. Lichtenhan, Y. A. Otonari, and M. J. Gan. Macromolecules, 1995, 28, 8435–7.CrossRefGoogle Scholar
  22. 22.
    T. S. Haddad and J. D. Linchtenhan. Macromolecules, 1996, 29, 7302–4.CrossRefGoogle Scholar
  23. 23.
    J. J. Schwab and J. D. Linchtenhan. J. Inorg. Organomet. Polym., 2001, 11, 123–54.CrossRefGoogle Scholar
  24. 24.
    B.-S. Kim. Macromolecules, 2002, 35, 8378–8384.CrossRefGoogle Scholar
  25. 25.
    W. Lee, S. Ni, J. Deng, B.-S. Kim, S. K. Satija, P. T. Mather, and A. R. Esker. Macromolecules, 2006, 40, 682–688.CrossRefGoogle Scholar
  26. 26.
    B. S. Kim. Macromolecules, 2006, 39, 9253–9260.CrossRefGoogle Scholar
  27. 27.
    P. Chhabra and V. Choudhary. Appl. Polym. Sci., 2010, 118, 3013–3023.CrossRefGoogle Scholar
  28. 28.
    T. S. Haddad and J. D. Lichtenhan. Macromolecules, 1996, 29, 7302–7304.CrossRefGoogle Scholar
  29. 29.
    J. D. Lichtenhan, Y. A. Otonari, and M. J. Carr. Macromolecules, 1995, 28, 8435–8437.CrossRefGoogle Scholar
  30. 30.
    J. Choi, R. Tamaki, S. G. Kim, and R. M. Laine, Organic/Inorganic Imide Nanocomposites from Aminophenyl Silsesquioxanes, Chem. Mater., 2003, 15, 3365–3375.Google Scholar
  31. 31.
    C. Sanchez, G. J. d. A. A Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, and V. Cabuil. Chem. Mater., 2001, 13, 3061–3083.CrossRefGoogle Scholar
  32. 32.
    J. Pyun and K. Matyjaszewski. Chem. Mater., 2001, 13, 3436–3448.CrossRefGoogle Scholar
  33. 33.
    J. H. Fendler. Chem. Mater., 2001, 13, 3196–3210.CrossRefGoogle Scholar
  34. 34.
    J. R. Hottle, H.-J. Kim, J. Deng, C. E. Farmer-Creely, B. D. Viers, and A. R. Esker. Macromolecules, 2004, 37, 4900–4908.CrossRefGoogle Scholar
  35. 35.
    J. Deng, C. E. Farmer-Creely, B. D. Viers, and A. R. Esker. Langmuir, 2004, 20, 2527–2530.CrossRefGoogle Scholar
  36. 36.
    R. Knischka, F. Dietsche, R. Hanselmann, H. Frey, R. Mülhaupt, and P. J. Lutz. Langmuir, 1999, 15, 4752–4756.CrossRefGoogle Scholar
  37. 37.
    A. Tsuchida, C. Bolln, F. G. Sernetz, H. Frey, and R. Mülhaupt. Macromolecules, 1997, 30, 2818–2824.CrossRefGoogle Scholar
  38. 38.
    S. Wu, T. Hayakawa, M. Kakimoto, and H. Oikawa. Macromolecules, 2008, 41, 3481–3487.CrossRefGoogle Scholar
  39. 39.
    M. A. Hoque, Y. Kakihana, S. Shinke, and Y. Kawakami. Macromolecules, 2009, 42, 3309–3315.CrossRefGoogle Scholar
  40. 40.
    R. Y. Kannan, H. J. Salacinski, P. E. Butler, and A. Seifalian. Acc. Chem. Res., 2005, 38, 879–884.CrossRefGoogle Scholar
  41. 41.
    R. Y. Kannan, H. J. Sacinski, M. J. Edirisinghe, G. Hamilton, and A. M. Seifalian. Biomaterials, 2006, 27, 4618–4626.CrossRefGoogle Scholar
  42. 42.
    Y. Lim, Y.-S. Park, Y. Kang, D. Y. Jang, J. H. Kim, J.-J. Kim, A. Sellinger, and D. Y. Yoon. J. Am. Chem. Soc., 2011, 133, 1375–82.CrossRefGoogle Scholar
  43. 43.
    K. Koh, S. Sugiyama, T. Morinaga, K. Ohno, Y. Tsujii, T. Fukuda, M. Yamahiro, T. Iijima, H. Oikawa, K. Watanabe, and T. Miyashita. Macromolecules, 2005, 38, 1264–1270.CrossRefGoogle Scholar
  44. 44.
    C.-M. Leu, G. M. Reddy, K.-H. Wei, and C.-F. Shu. Chem. Mater., 2003, 15, 2261–2265.CrossRefGoogle Scholar
  45. 45.
    C.-M. Leu, Y.-T. Chang, and K.-H. Wei. Chem. Mater., 2003, 15, 3721–3727.CrossRefGoogle Scholar
  46. 46.
    C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, S. L. Coles, H. A. Hristov, and A. F. Yee. J. Am. Chem. Soc., 1998, 120, 8380–8391.CrossRefGoogle Scholar
  47. 47.
    H. Xu, S.-W. Kuo, J.-S. Lee, and F.-C. Chang. Macromolecules, 2002, 35, 8788–8793.CrossRefGoogle Scholar
  48. 48.
    D. A. Loy and K. J. Shea. Chem. Rev., 1995, 95, 1431–1442.CrossRefGoogle Scholar
  49. 49.
    R. H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki. Chem. Rev., 1995, 95, 1409–1430.CrossRefGoogle Scholar
  50. 50.
    Y. W. Chang, E. Wang, G. Shin, J. E. Han, and P. T. Mather. Polym. Adv. Technol., 2007, 18,535.CrossRefGoogle Scholar
  51. 51.
    A. C. Kucuk, J. Matsui, and T. Miyashita. J. Colloid Interface Sci., 2011, 355,106.CrossRefGoogle Scholar
  52. 52.
    A. C. Kucuk, J. Matsui, and T. Miyashita. Langmuir, 2011, 27, 6381–6388.CrossRefGoogle Scholar
  53. 53.
    J. Matsui, A. C. Kucuk, and T. Miyashita. Chem. Lett., 2012, 41, 1204–1206.CrossRefGoogle Scholar
  54. 54.
    A. C. Kucuk, J. Matsui, and T. Miyashita. Thin Solid Films, 2013, 534, 577–583.CrossRefGoogle Scholar
  55. 55.
    L. Cui, J. P. Collet, G. Xu, and L. Zhu. Chem. Mater., 2006, 18, 3503.CrossRefGoogle Scholar
  56. 56.
    R. Khurana, J. L. Schaefer, L. A. Archer, and G. W. Coates. J. Am. Chem. Soc., 2014, 136, 7395–7402.CrossRefGoogle Scholar
  57. 57.
    S. H. Kim, K. H. Choi, S. J. Cho, E. H. Kil, and S. Y. Lee. J. Mater. Chem. A, 2013, 1, 4949–4955.CrossRefGoogle Scholar
  58. 58.
    S. Liu, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, and J. Yang. J. Electrochem. Soc., 2010, 157, A1092–A1098.CrossRefGoogle Scholar
  59. 59.
    T. Sancho, J. Soler, and M. P. Pina. J. Power Sources, 2007, 169, 92–97.CrossRefGoogle Scholar
  60. 60.
    S. Subianto, M. K. Mistry, N. R. Choudhury, N. K. Dutta, and R. Knott. ACS Appl. Mater. Interfaces, 2009, 1, 1173–1182.CrossRefGoogle Scholar
  61. 61.
    G. A. Serad. J. Polym. Sci., Part A Polym. Chem., 1996, 34, 1123e4.CrossRefGoogle Scholar
  62. 62.
    Q. Liu, Q. Sun, N. Ni, F. Luo, R. Zhang, S. Hu, X. Bao, F. Zhang, F. Zhao, and X. Li. Int. J. Hydrog. Energy, 2016, 41, 16160–16166.CrossRefGoogle Scholar
  63. 63.
    B. Decker, C. H. Thompson, P. I. Carver, S. E. Keinath, and P. R. Santurri. Chem. Mater., 2010, 22, 942–948.CrossRefGoogle Scholar
  64. 64.
    J. Choi, K. M. Lee, R. Wycisk, P. N. Pintauro, and P. T. Mather. J. Electrochem. Soc., 2010, 157, B914–B919.CrossRefGoogle Scholar
  65. 65.
    D. Gupta, A. Madhukar, and V. Choudhary. Int. J. Hydrog. Energy, 2013, 38, 12817–12829.CrossRefGoogle Scholar
  66. 66.
    S. Subianto, M. K. Mistry, N. R. Choudhury, N. K. Dutta, and R. Knott. ACS Appl. Mater. Inter., 2009, 1, 1173e82.CrossRefGoogle Scholar
  67. 67.
    C. del Río, E. Morales, and P. G. Escribano. Int. J. Hydrogen Energy, 2014, 39, 5326e37.CrossRefGoogle Scholar
  68. 68.
    C. H. Thampson, A. Merrington, P. I. Carver, D. L. Keeley, J. L. Rousseau, and D. Hucul. J. App. Polym. Sci., 2008, 110, 958–974.CrossRefGoogle Scholar
  69. 69.
    B. Decker, C. Hartmann-Thomson, P. I. Carver, S. E. Keinath, and P. Santurri. Chem. Mater., 2010, 22, 942–948.CrossRefGoogle Scholar
  70. 70.
    Y.-C. Yen, Y.-S. Ye, C.-C. Cheng, C.-H. Lu, L.-D. Tsai, J.-M. Huang, and F.-C. Chang. Polymer, 2010, 51, 84–91.CrossRefGoogle Scholar
  71. 71.
    C. Gong, Y. Liang, Z. Qi, H. Li, Z. Wu, Zeying Zhang, S. Zhang, X. Zhang, and Y. Li. J. Membrane Sci., 2015, 476, 364–372.CrossRefGoogle Scholar
  72. 72.
    A. C. Kucuk, J. Matsui, and T. Miyashita. J. Mater. Chem., 2012, 22, 3853–3858.CrossRefGoogle Scholar
  73. 73.
    T. Miyashita, J. Matsui, and A. C. Kucuk. Patent Number 5742510.Google Scholar
  74. 74.
    B. Decker, C. Hartmann-Thompson, P. I. Carver, S. E. Keinath, and P. R. Santurri. Chem. Mater. 2009, 22, 942–948.CrossRefGoogle Scholar
  75. 75.
    J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, and K. Amine. Chem. Rev., 2014, 114, 5611–5640.CrossRefGoogle Scholar
  76. 76.
    Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, and K. Amine. Nature Materials, 2012, 11, 942–947.CrossRefGoogle Scholar
  77. 77.
    Z. Zhang and K. Amine. Science, 2013, 6, 1806–1810.Google Scholar
  78. 78.
    K. Amine and Q. Wang. Electrochemistry Comn., 2006, 8, 429–433.CrossRefGoogle Scholar
  79. 79.
    Z. C. Zhang, J. Lu, and R. S. Assary. J. Phys. Chem. C, 2011, 115, 25535–25542.CrossRefGoogle Scholar
  80. 80.
    R. S. Assary, J. Lu, P. Du, X. Luo, X. Zhang, Y. Ren, L. A. Curtiss, and K. Amine. Chem. Sus. Chem., 2013, 6, 51–55.CrossRefGoogle Scholar
  81. 81.
    J. Shui, J. Okasinski, D. Zhao, J. Almer, and D.-J. Liu. ESC Trans., 2013, 50, 37–45.Google Scholar
  82. 82.
    R. S. Assary, L. A. Curtiss, P. C. Redfern, Z. C. Zhang, and K. Amine. J. Phys. Chem. C, 2013, 115, 12216–12223.CrossRefGoogle Scholar
  83. 83.
    X. Zhang, J. K. Pugh, and P. N. Ross. J. Electrochem. Soc., 2001, 148, E183.CrossRefGoogle Scholar
  84. 84.
    K. Xu. Chem. Rev., 2004, 104, 4303.CrossRefGoogle Scholar
  85. 85.
    P. Maitra and S. L. Wunder. Electrochem. Solid-State Lett., 2004, 7, A88–A92.CrossRefGoogle Scholar
  86. 86.
    H. Zhang, S. Kulkarni, and S. L. Wunder. J. Electrochem. Soc., 2006, 153, A239–A248.CrossRefGoogle Scholar
  87. 87.
    K. Naka, R. Shinke, M. Yamada, F. Djouadi Belkada, Y. Aijo, Y. Irie, S. R. Shankar, K. Sai Smaran, N. Matsumi, S. Tomita, and S. Sakurai. Polym. J., 2014, 46, 42–51.CrossRefGoogle Scholar
  88. 88.
    A. S. Soo Lee, J. H. Lee, J.-C. Lee, S. Man Hong, S. S. Hwang, and C. Min Koo. J. Mater. Chem. A, 2014, 2, 1277–1283.CrossRefGoogle Scholar
  89. 89.
    A. R. Polu and H.-W. Rhee. J. Ind., Eng. Chem., 2015, 31, 323–329.CrossRefGoogle Scholar
  90. 90.
    S.-K. Kim, D.-G. Kim, A. Lee, H.-S. Sohn, J. J. Wie, N. A. Nguyen, M. E. Mackay, and J.-C. Lee. Macromolecules, 2012, 45, 9347–9356.CrossRefGoogle Scholar
  91. 91.
    J. H. Lee, A. S. Lee, J.-C. Lee, S. M. Hong, S. S. Hwang, and C. M. Koo. ACS Appl. Mater. Interfaces, 2017, 9, 3616–3623.CrossRefGoogle Scholar
  92. 92.
    Z. Zhang and K. Amine. J. Power Sources, 2010, 195, 6062–6068.CrossRefGoogle Scholar
  93. 93.
    A. Nicholas, A. Rossi, and K. Amine. Silicon, 2010, 2, 201–208.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, Engineering FacultyMarmara UniversityIstanbulTurkey

Personalised recommendations