Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1737–1743 | Cite as

A Novel Green Synthesis of Copper Oxide Nanoparticles Using a Henna Extract Powder

  • S. Taghavi FardoodEmail author
  • A. Ramazani
  • P. A. Asiabi
  • S. W. Joo


Cupric oxide (CuO) nanoparticles are synthesized using Henna and copper nitrate as the copper source by the green method at different calcination temperatures. The effect of the amount of Henna extracts on the particle size and the morphology of nanoparticles is characterized by powder X-ray diffraction (XRD) and scanning electron microscopy. This method has many advantages such as nontoxicity, economic viability, easiness to scale up, less time consuming and environment-friendly approach for the synthesis of CuO nanoparticles without using any organic chemicals. The average crystallite size of CuO nanoparticles is calculated using the Scherrer formula. The powder XRD analysis reveals the formation of a monoclinic CuO phase with an average particle size of 22–38 nm. There is good agreement between the data obtained by XRD and microscopic measurements. The particle sizes of the prepared cupric oxide nanoparticles depend on the amount of Henna extracts and calcination temperatures.


Henna copper oxide nanoparticles nanobiotechnology green method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Ghomi. J. Struct. Chem., 2016, 57, 194–198.CrossRefGoogle Scholar
  2. 2.
    F. Sadri, A. Ramazani, H. Ahankar, S. Taghavi Fardood, P. Azimzadeh Asiabi, M. Khoobi, S. Woo Joo, and N. Dayyani. J. Nanostruct., 2016, 6, 264–272.Google Scholar
  3. 3.
    S. Taghavi Fardood, A. Ramazani, and S. Moradi. J. Sol-Gel Sci. Technol., 2017, 82, 432–439.CrossRefGoogle Scholar
  4. 4.
    E. Kraleva, M. L. Saladino, R. Matassa, E. Caponetti, S. Enzo, and A. Spojakina. J. Struct. Chem., 2011, 52, 330–339.CrossRefGoogle Scholar
  5. 5.
    A. Ramazani, A. Farshadi, A. Mahyari, F. Sadri, S. W. Joo, P. A. Asiabi, S. Taghavi Fardood, N. Dayyani, and H. Ahankar. Int. J. Nano Dimens., 2016, 7,41.Google Scholar
  6. 6.
    S. Taghavi Fardood, K. Atrak, and A. Ramazani. J. Mater. Sci. Mater. Electron., 2017, 28, 10739–10746.CrossRefGoogle Scholar
  7. 7.
    V. D. Kulkarni and P. S. Kulkarni. Int. J. Chem. Stud., 2013, 1, 1–4.Google Scholar
  8. 8.
    M.-H. Chang, H.-S. Liu, and C. Y. Tai. Powder Technol., 2011, 207, 378–386.CrossRefGoogle Scholar
  9. 9.
    P. Udani, P. Gunawardana, H. C. Lee, and D. H. Kim. Int. J. Hydrogen Energy, 2009, 34, 7648–7655.CrossRefGoogle Scholar
  10. 10.
    J.-L. Cao, G.-S. Shao, Y. Wang, Y. Liu, and Z.-Y. Yuan. Catal. Commun., 2008, 9, 2555–2559.CrossRefGoogle Scholar
  11. 11.
    C.-Y. Chiang, K. Aroh, N. Franson, V. R. Satsangi, S. Dass, and S. Ehrman. Int. J. Hydrogen Energy, 2011, 36, 15519–15526.CrossRefGoogle Scholar
  12. 12.
    Y. She, Q. Zheng, L. Li, Y. Zhan, C. Chen, Y. Zheng, and X. Lin. Int. J. Hydrogen Energy, 2009, 34, 8929–8936.CrossRefGoogle Scholar
  13. 13.
    M. Frietsch, F. Zudock, J. Goschnick, and M. Bruns. Sens. Actuators, B, 2000, 65, 379–381.CrossRefGoogle Scholar
  14. 14.
    R. V. Kumar, Y. Diamant, and A. Gedanken. Chem. Mater., 2000, 12, 2301–2305.CrossRefGoogle Scholar
  15. 15.
    Z.-S. Hong, Y. Cao, and J.-F. Deng. Mater. Lett., 2002, 52, 34–38.CrossRefGoogle Scholar
  16. 16.
    H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie, and B. Zou. Nanotechnology, 2003, 15,37.CrossRefGoogle Scholar
  17. 17.
    E. Darezereshki and F. Bakhtiari. J. Min. Metall. Sect. B., 2011, 47, 73–78.CrossRefGoogle Scholar
  18. 18.
    D. I. Son, C. H. You, and T. W. Kim. Appl. Surf. Sci., 2009, 255, 8794–8797.CrossRefGoogle Scholar
  19. 19.
    H. Wang, J.-Z. Xu, J.-J. Zhu, and H.-Y. Chen. J. Cryst. Growth, 2002, 244, 88–94.CrossRefGoogle Scholar
  20. 20.
    J. M. Kshirsagar, R. Shrivastava, and P. S. Adwani. Therm. Sci., 2015, 26–26.Google Scholar
  21. 21.
    R. Etefagh, E. Azhir, and N. Shahtahmasebi. Sci. Iran., 2013, 20, 1055–1058.Google Scholar
  22. 22.
    P. V. Kumar, U. Shameem, P. Kollu, R. Kalyani, and S. Pammi. BioNanoScience, 2015, 5, 135–139.CrossRefGoogle Scholar
  23. 23.
    V. V. T. Padil and M. Cerník. Int. J. Nanomed., 2013, 8, 889–898.Google Scholar
  24. 24.
    H. J. Lee, J. Y. Song, and B. S. Kim. J. Chem. Technol. Biotechnol., 2013, 88, 1971–1977.Google Scholar
  25. 25.
    A. Y. Jayalakshmi. Int. J. Nanomater. Bios., 2014, 4, 66–71.Google Scholar
  26. 26.
    A. Ostovari, S. Hoseinieh, M. Peikari, S. Shadizadeh, and S. Hashemi. Corros. Sci., 2009, 51, 1935–1949.CrossRefGoogle Scholar
  27. 27.
    J. Kasthuri, S. Veerapandian, and N. Rajendiran. Colloids Surf., B, 2009, 68, 55–60.CrossRefGoogle Scholar
  28. 28.
    S. Marimuthu, A. A. Rahuman, T. Santhoshkumar, C. Jayaseelan, A. V. Kirthi, A. Bagavan, C. Kamaraj, G. Elango, A. A. Zahir, and G. Rajakumar. Parasitol. Res., 2012, 111, 2023–2033.CrossRefGoogle Scholar
  29. 29.
    L. E. Alexander. X-ray diffraction procedures for polycrystalline and amorphous materials, publisher not identified, 1974.Google Scholar
  30. 30.
    S. Taghavi Fardood and A. Ramazani. J. Nanostruct., 2016, 6, 167–171.Google Scholar
  31. 31.
    S. Salunke-Gawali, S. Rane, V. Puranik, C. Guyard-Duhayon, and F. Varret. Polyhedron, 2004, 23, 2541–2547.CrossRefGoogle Scholar
  32. 32.
    P. Garge, R. Chikate, S. Padhye, J. M. Savariault, P. De Loth, and J. P. Tuchagues. Inorg. Chem., 1990, 29, 3315–3320.CrossRefGoogle Scholar
  33. 33.
    A. P. Neves, M. D. Vargas, C. A. T. Soto, J. M. Ramos, L. d. C. Visentin, C. B. Pinheiro, A. S. Mangrich, and E. I. de Rezende. Spectrochim. Acta, Part A, 2012, 94, 152–163.CrossRefGoogle Scholar
  34. 34.
    P. Babula, J. Vanco, L. Krejcova, D. Hynek, J. Sochor, V. Adam, L. Trnkova, J. Hubalek, and R. Kizek. Int. J. Electrochem. Sci., 2012, 7, 7349–7366.Google Scholar
  35. 35.
    R. Yuvakkumar, J. Suresh, B. Saravanakumar, A. J. Nathanael, S. I. Hong, and V. Rajendran. Spectrochim. Acta, Part A, 2015, 137, 250–258.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Taghavi Fardood
    • 1
    Email author
  • A. Ramazani
    • 1
    • 2
  • P. A. Asiabi
    • 1
  • S. W. Joo
    • 3
  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran
  2. 2.Research Institute of Modern Biological TechniquesUniversity of ZanjanZanjanIran
  3. 3.School of Mechanical EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations