Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1719–1725 | Cite as

Structural Deformations During Cycling of the Conversion Cathode Nanocomposite Based on FeF3

  • V. V. ShapovalovEmail author
  • A. A. Guda
  • I. A. Pankin
  • A. Pohl
  • A. V. Soldatov
Article
  • 27 Downloads

Abstract

The data on the dynamics of structural changes in the composite cathode material based on iron(III) fluoride studied by the operando synchrotron X-ray spectroscopy and diffraction combined with the density functional theory (DFT) are reported. Based on the FeF3 structure determined by X-ray crystallography the crystal structure of LixFeF3 for 0 < x < 0.5 is modeled by the geometry optimization. The crystal structure models for 0.5 < x < 1 are predicted using the evolutionary algorithms. The Fe K-edge X-ray absorption spectra are calculated for these models and compared with the experimental data.

Keywords

iron fluorides lithium-ion batteries cathode materials XRD XANES DFT evolutionary algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Liang, M. Gao, H. Pan, Y. Liu, and M. Yan. J. Alloys Compd., 2013, 575, 246–256.CrossRefGoogle Scholar
  2. 2.
    V. Aravindan, Y.-S. Lee, and S. Madhavi. Adv. Energy Mater., 2015, 5(13), 1402225.CrossRefGoogle Scholar
  3. 3.
    J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacín. Adv. Mater., 2010, 22(35), E170–E192.CrossRefGoogle Scholar
  4. 4.
    H. Li, P. Balaya, and J. Maie. J. Electrochem. Soc., 2004, 151(11), A1878–A1885.CrossRefGoogle Scholar
  5. 5.
    D. E. Conte and N. Pinna. Materials for Renewable and Sustainable Energy, 2014, 3(4).Google Scholar
  6. 6.
    D. Dambournet, M. Duttine, K. W. Chapman, A. Wattiaux, O. Borkiewicz, P. J. Chupas, A. Demourgues, and H. Groult. J. Phys. Chem. C, 2014, 118, 14039–14043.CrossRefGoogle Scholar
  7. 7.
    C. Li, L. Gu, S. Tsukimoto, and P. A. van Aken. J. Maier. Adv. Mater., 2010, 22(33), 3650–3654.CrossRefGoogle Scholar
  8. 8.
    C. Li, L. Gu, J. Tong, and S. Tsukimoto. J. Maier. Adv. Funct. Mater., 2011, 21(8), 1391–1397.CrossRefGoogle Scholar
  9. 9.
    C. Li, X. Mu, and P. A. van Aken. J. Maier. Adv. Energy Mater., 2013, 3(1), 113–119.CrossRefGoogle Scholar
  10. 10.
    I. Liu, H. Guo, M. Zhou, and X. Wang. J. Power Sources, 2013, 238, 501–515.CrossRefGoogle Scholar
  11. 11.
    C. Chen, X. Xu, S. Chen, B. Zheng, M. Shui, L. Xu, W. Zheng, J. Shu, L. Cheng, L. Feng, and Y. Ren. Mater. Res. Bull., 2015, 64, 187–193.CrossRefGoogle Scholar
  12. 12.
    F. Badway, F. Cosandey, N. Pereira, and G. G. Amatucci. J. Electrochem. Soc., 2003, 150(10), A1318–A1327.CrossRefGoogle Scholar
  13. 13.
    F. Badway, N. Pereira, F. Cosandey, and G. G. Amatucci. J. Electrochem. Soc., 2003, 150(9), A1209–A1218.CrossRefGoogle Scholar
  14. 14.
    F. Cosandey, J. F. Al-Sharab, F. Badway, G. G. Amatucci, and P. Stadelmann. Microsc. Microanal., 2007, 13(2), 87–95.CrossRefGoogle Scholar
  15. 15.
    W. Zhang, P. N. Duchesne, Z.-L. Gong, S.-Q. Wu, L. Ma, Z. Jiang, S. Zhang, P. Zhang, J.-X. Mi, and Y. Yang. J. Phys. Chem. C, 2013, 117, 11498–11505.CrossRefGoogle Scholar
  16. 16.
    N. Yamakawa, M. Jiang, B. Key, and C. P. Grey. J. Am. Chem. Soc., 2009, 131, 10525–1053.CrossRefGoogle Scholar
  17. 17.
    X. Zhao, C. M. Hayner, C. M. Kung, and H. H. Kung. Chem. Commun., 2012, 48, 9909.CrossRefGoogle Scholar
  18. 18.
    B. Wang, D. Wang, Q. Wang, T. Liu, C. Guo, and X. Zhao. J. Mater. Chem. A, 2013, 1, 19696.Google Scholar
  19. 19.
    A. Pohl, M. Faraz, A. Schröder, M. Baunach, W. Schabel, A. Guda, V. Shapovalov, A. Soldatov, V. S. K. Chakravadhanula, C. Kübelade, R. Witte, H. Hahn, T. Diemant, R. J. Behm, H. Emerich, and M. Fichtner. J. Power Sources, 2016, 313, 213–222.CrossRefGoogle Scholar
  20. 20.
    P. M. Abdala, O. V. Safonova, G. Wiker., W. van Beek, H. Emerich, J. van Bokhoven, J. A. Sa, J. Szlachetko, and M. Nachtegaal. Chimia, 2012, 66, 699–705.CrossRefGoogle Scholar
  21. 21.
    W. Van Beek, O. V. Safonova, G. Wiker, and H. Emerich. Phase Transitions, 2011, 84, 726–732.CrossRefGoogle Scholar
  22. 22.
    B. Das, A. Pohl, V. S. K. Chakravadhanula, C. Kübel, and M. Fichtner. J. Power Sources, 2014, 267,203.CrossRefGoogle Scholar
  23. 23.
    G. Kresse and J. Furthmüller. Comput. Mater. Sci., 1996, 6, 15–50.CrossRefGoogle Scholar
  24. 24.
    G. Kresse and J. Furthmüller. Phys. Rev. B, 1996, 54, 11169–11186.CrossRefGoogle Scholar
  25. 25.
    G. Kresse and D. Joubert. Phys. Rev. B, 1999, 59, 1758–1775.CrossRefGoogle Scholar
  26. 26.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical species. USA, New York: Cambridge University press, 1986.Google Scholar
  27. 27.
    C. W. Glass, A. R. Oganov, and N. Hansen. Comput. Phys. Commun., 2006, 175, 713–720.CrossRefGoogle Scholar
  28. 28.
    A. R. Oganov and C. W. Glass. J. Chem. Phys., 2006, 124, 244704.CrossRefGoogle Scholar
  29. 29.
    A. R. Oganov, A. O. Lyakhov, and M. Valle. Acc. Chem. Res., 2011, 44, 227–236.CrossRefGoogle Scholar
  30. 30.
    Y. Joly. Phys. Rev. B, 2001, 63, 125120.CrossRefGoogle Scholar
  31. 31.
    Y. Joly and S. Grenier. In: X-Ray Absorption and X-Ray Emission Spectroscopy /Eds. J.A. van Bokhaven, C. Lamberi. UK, Chichester: John Wiley & Sons, 2016, 73–97.Google Scholar
  32. 32.
    S. A. Guda, A. A. Guda, M. A. Soldatov, K. A. Lomachenko, A. L. Bugaev, C. Lamberti, W. Gawelda, C. Bressler, G. Smolentsev, A. V. Soldatov, and Y. Joly. J. Chem. Theor. Comput., 2015, 11, 4512–4521.CrossRefGoogle Scholar
  33. 33.
    A. A. Guda, S. A. Guda, M. A. Soldatov, K. A. Lomachenko, A. L. Bugaev, C. Lamberti, W. Gawelda, C. Bressler, G. Smolentsev, A. V. Soldatov, and Y. Joly. J. Phys. Conf. Ser., 2016, 712, 12004.CrossRefGoogle Scholar
  34. 34.
    H. J. Tan, Hillary L. Smith, L. Kim, Trina K. Harding, Simon C. Jones, and B. Fultza. J. Electrochem. Soc., 2014, 161(3), A445–A449.CrossRefGoogle Scholar
  35. 35.
    L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan, and S. Jin. J. Am. Chem. Soc., 2016, 138, 2838–2848.CrossRefGoogle Scholar
  36. 36.
    F. Wang, R. Robert, N. A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M. S. Whittingham, C. P. Grey, G. G. Amatucci, Y. Zhu, and J. Graetz. J. Am. Chem. Soc., 2011, 133, 18828–18836.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Shapovalov
    • 1
    Email author
  • A. A. Guda
    • 1
  • I. A. Pankin
    • 1
  • A. Pohl
    • 2
  • A. V. Soldatov
    • 1
  1. 1.Smart Materials Research InstituteSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations