Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1707–1718 | Cite as

Structure of a Graphene-Modified Electroactive Polymer for Membranes of Biomimetic Systems: Simulation and Experiment

  • N. I. AlekseevEmail author
  • A. P. Broiko
  • V. E. Kalenov
  • A. V. Korlyakov
  • A. V. Lagosh
  • A. O. Lifshits
  • V. V. Luchinin
  • I. K. Khmel’nitskii
Article
  • 12 Downloads

Abstract

A model is proposed that describes the structure of water filled Nafion-graphene composite forming the body of an electroactive polymer membrane for actuators of biomimetic systems able to work in air and a liquid medium. The model predicts the growth of the ionic conductivity with increasing concentration of a graphene modifier, which is due to that the size of a part of clusters of the Nafion framework containing hydrophobic graphene flakes enlarges together with the pore size. Then the optimal concentration of the graphene modifier is reached, which provides the maximum ionic conductivity and actuation ability of the membrane as well as its elastic properties. The possibility of introducing into Nafion the modifier amount needed to improve the actuator operation is experimentally tested.

Keywords

graphene biomimetic systems electroactive polymers artificial muscle reduced graphene oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, et al. Smart Mater. Struct., 1998, 7(6), 15–30.CrossRefGoogle Scholar
  2. 2.
    S. Nemat-Nasser. J. Appl. Phys., 2002, 92(5), 1–21.CrossRefGoogle Scholar
  3. 3.
    D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim. J. Membr. Sci., 2014, 452, 20–28.CrossRefGoogle Scholar
  4. 4.
    L. Wang, J. Kang, J. D. Nam, J. Suhr, A. K. Prasad, and S. G. Advani. ECS Electrochem. Lett., 2015, 4(1), F1–F4.CrossRefGoogle Scholar
  5. 5.
    J.-H. Jung, J.-H. Jeon, V. Sridhar, and Il-Kwon Oh. Carbon, 2011, 49, 1279–1289.CrossRefGoogle Scholar
  6. 6.
    J. H. Jeon, R. K. Cheedarala, C. D. Kee, and I. K. Oh. Adv. Funct. Mater., 2013.Google Scholar
  7. 7.
    T. Tungkavet, N. Seetapan, D. Pattavarakorn, and A. Siriva. Polymer., 2015, 70, 242–251.CrossRefGoogle Scholar
  8. 8.
    T. D. Gierke, G. E. Munn, and F. C. Wilson. J. Polym. Sci., Polym. Phys., 1981, 19, 1687.CrossRefGoogle Scholar
  9. 9.
    W. Y. Hsu and T. D. Gierke. Macromolecules, 1982, 15,101.CrossRefGoogle Scholar
  10. 10.
    A. K. Ivanov-Shits and I. V. Murin. Ionics of Solids [in Russian]. V.1. Izd. St. Petersburg Univ., 2000.Google Scholar
  11. 11.
    V. E. Kalenov, A. P. Broiko, A. V. Korlyakov, I. K. Khmel'nitskii, D. A. Chigirev, Yu. O. Bykov, A. V. Lagosh, and A. I. Krot. Nano and Microsystem Devices [in Russian], 2013, 161(12), 41–46.Google Scholar
  12. 12.
    A. V. Korlyakov, I. K. Khmel'nitskii, A. P. Broiko, V. E. Kalenov, A. V. Lagosh, A. I. Krot, and A. V. Ryzhkova. Nano and Microsystem Devices [in Russian], 2016, 191(6),4.Google Scholar
  13. 13.
    V. I. Zabolotskii and V. V. Nikonenko. Ion Transfer in Membranes [in Russian]. Moscow: Nauka, 1996.Google Scholar
  14. 14.
    M. Shahinpoor and K. J. Kim. Smart Mater. Struct., 2004, 13, 1362.CrossRefGoogle Scholar
  15. 15.
    S. N. Nasser. J. Appl. Phys., 2002, 92(5), 1–21.Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshits. Theoretical Physics [in Russian]. V.7. Hydrodynamics. Moscow: Nauka, 1988.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. I. Alekseev
    • 1
    Email author
  • A. P. Broiko
    • 1
  • V. E. Kalenov
    • 1
  • A. V. Korlyakov
    • 1
  • A. V. Lagosh
    • 1
  • A. O. Lifshits
    • 1
  • V. V. Luchinin
    • 1
  • I. K. Khmel’nitskii
    • 1
  1. 1.St. Petersburg State Electrotechnical UniversitySaint PetersburgRussia

Personalised recommendations