Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1674–1677 | Cite as

Fluorescence Spectral Study on the Interaction Between Copper(II) Complex with (E)-3-(2,3-Dihydrobenzo[b][1,4] Dioxin-6-Yl) Acrylic Acid and Urease

  • T.-R. Wang
  • Q.-C. Zhou
  • J.-L. Ren
  • M.-J. Zhu
  • R.-M. Xie
  • G.-H. ShengEmail author
Article
  • 8 Downloads

Abstract

We have previously reported the synthesis, structure and urease inhibitory activity of a complex [Cu2(L)4DMSO2]·2DMSO (HL = (E)-3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylic acid), and we found the complex to show a strong inhibitory activity against jack bean urease [1]. In this study, the interaction of the complex and urease is studied by fluorescence spectroscopy. We find that the fluorescence quenching mechanism of the complex with urease is static quenching. The quenching rate constant (Kq) is 1.6·1012 l/mol·s–1, the quenching constant (Ksv) is 1.6×104 l/mol, the association binding constant (K) is 3.55·104 l/mol, and the binding site number (n) is 1.22.

Keywords

complex urease binding quenching mechanism Ksv Kq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. F. Chen and C. F. Wang. J. Struct. Chem., 2017, 58(4), 841–847.CrossRefGoogle Scholar
  2. 2.
    H. L. Mobley and R. P. Hausinger. Microbiol. Rev., 1989, 53(1), 85–108.Google Scholar
  3. 3.
    H. L. Mobley, M. D. Island, and R. P. Hausinger. Microbiol. Rev., 1995, 59(30), 451–480.Google Scholar
  4. 4.
    L. E. Zonia and N. E. Stebbins. Adv. Plant Physiol., 1995, 107(4), 1097–1103.CrossRefGoogle Scholar
  5. 5.
    C. M. Collins and S. E. D'Orazio. Mol. Microbiol., 1993, 9(5), 907–913.CrossRefGoogle Scholar
  6. 6.
    C. Montecucco and R. Rappuoli. Nat. Rev. Mol. Cell Biol., 2001, 2(6), 457–466.CrossRefGoogle Scholar
  7. 7.
    Z. Wang, O. V. Cleemput, P. Demeyer, and L. Baert. Biol. Fertil. Soils, 1991, 11(1), 43–47.CrossRefGoogle Scholar
  8. 8.
    IARC Monograph on the Evaluation of the Carcinogenic Risks to Humans, 1994, 61(1).Google Scholar
  9. 9.
    B. Krajewska. J. Mol. Catal. B: Enzym., 2009, 59(1-3), 22–40.CrossRefGoogle Scholar
  10. 10.
    B. J. Marshall. Gastroenterology Clinics of North America, 1993, 22(1), 183–98.Google Scholar
  11. 11.
    A. R. Timerbaev, C. G. Hartinger, S. S. Aleksenko, and B. K. Keppler. Chem. Rev., 2006, 106(6), 2224–2248.CrossRefGoogle Scholar
  12. 12.
    M. J. McKeage. Drug Saf., 1995, 13(4), 228–244.CrossRefGoogle Scholar
  13. 13.
    H. M. Zhang, G. C. Zhang, and Y. Q. Wang. Biol. Trace Elem. Res., 2011, 141(1-3), 53–64.CrossRefGoogle Scholar
  14. 14.
    J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3nd ed. New York: Springer, 2006.CrossRefGoogle Scholar
  15. 15.
    J. R. Lakowicz and G. Weber. Biochemistry, 1973, 12, 4161–4170.CrossRefGoogle Scholar
  16. 16.
    P. Mandal and T. Ganguly. J. Phys. Chem. B, 2009, 113, 14904–14913.CrossRefGoogle Scholar
  17. 17.
    S. Wu, W. Yuan, H. Wang, Q. Zhang, M. Liu, and K. Yu. J. Inorg. Biochem., 2008, 102, 2026–2034.CrossRefGoogle Scholar
  18. 18.
    J. R. Lakowicz. Principles of fluorescence spectroscopy, 2nd edn. New York: Plenum Press, 1999.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T.-R. Wang
    • 1
  • Q.-C. Zhou
    • 2
  • J.-L. Ren
    • 1
  • M.-J. Zhu
    • 1
  • R.-M. Xie
    • 1
  • G.-H. Sheng
    • 1
    Email author
  1. 1.School of Life SciencesShandong University of TechnologyZiboP. R. China
  2. 2.School of Agricultural Engineering and Food ScienceShandong University of TechnologyZiboP. R. China

Personalised recommendations