Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1639–1647 | Cite as

Effect of Synthesis Conditions on the Formation of the CuCrAlO4 Spinel Structure

  • L. M. Plyasova
  • L. S. Dovlitova
  • I. I. Simentsova
  • I. Yu. Molina
  • N. V. Shtertser
  • T. P. MinyukovaEmail author
Article
  • 11 Downloads

Abstract

The effect of synthesis conditions of mixed hydroxy compounds (coprecipitation mode, residence and aging times, precipitator nature) on the structural characteristics of CuCrAlO4 spinels is studied. Evolution of the spinel structure during the solid-phase synthesis is analyzed.

Keywords

spinel CuCrAlO4 synthesis conditions structural characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Kirankumar and S. Sumathi. Mater. Chem. Phys., 2017, 197,17.CrossRefGoogle Scholar
  2. 2.
    C. Ragupathi, J. J. Vijaya, R. T. Kumar, and L. J. Kennedy. J. Molec. Struct., 2015, 1079,182.CrossRefGoogle Scholar
  3. 3.
    C. Ragupathi, J. J. Vijaya, L. J. Kennedy, and M. Bououdin. Mater. Sci. Semicond. Process., 2014, 24,146.CrossRefGoogle Scholar
  4. 4.
    N. Bayal and P. Jeevanandam. J. Alloys Compd., 2012, 516,27.CrossRefGoogle Scholar
  5. 5.
    A. Gholami and M. Maddahfar. J. Mater. Sci: Mater. Electron., 2016, 27, 3341.Google Scholar
  6. 6.
    R. Talebi. J. Mater. Sci: Mater. Electron., 2016, 27, 5665.Google Scholar
  7. 7.
    I. Mindru, D. Gingasu, L. Patron, G. Marinescu, J. M. Calderon-Moreno, S. Preda, O. Oprea, and S. Nita. Ceram. Int., 2016, 42,154.CrossRefGoogle Scholar
  8. 8.
    J. P. Kumar, G. K. Prasad, J. A. Allen, P. V. R. K. Ramacharyulu, K. Kadirvelu, and B. Singh. J. Alloys Compd., 2016, 662,44.CrossRefGoogle Scholar
  9. 9.
    M. Zawadzki and J. Wrzyszcz. Mater. Res. Bull., 2000, 35,109.CrossRefGoogle Scholar
  10. 10.
    X. Wie and D. Chen. Mater. Lett., 2006, 60,823.CrossRefGoogle Scholar
  11. 11.
    V. V. Malakhov and I. G. Vasilieva. Usp. Khim., 2008, 77,370.CrossRefGoogle Scholar
  12. 12.
    V. V. Malakhov. J. Struct. Chem., 2010, Suppl., 51,152.CrossRefGoogle Scholar
  13. 13.
    V. V. Malakhov, N. N. Boldyreva, A. A. Vlasov, and L. S. Dovlitova. Zh. Anal. Khim., 2011, 66,473.Google Scholar
  14. 14.
    M. J. L. Gines and C. R. Apesteguia. J. Therm. Anal. Calorim., 1997, 50,745.CrossRefGoogle Scholar
  15. 15.
    T. M. Yurieva. Kinet. Katal., 1985, 26,686.Google Scholar
  16. 16.
    I. I. Simentsova, L. M. Plyasova, N. V. Shtertser, T. P. Minyukova, V. I. Zaikovskii, E. A. Paukshtis, and T. M. Yurieva. Russ. J. Inorg. Chem., 2017, 62,39.CrossRefGoogle Scholar
  17. 17.
    B. V. Nekrasov. Principles of General Chemistry [in Russian]. Moscow: Khimiya, 1970, 3,413.Google Scholar
  18. 18.
    H. M. Rietveld. J. Appl. Crystallogr., 1969, 2,69.CrossRefGoogle Scholar
  19. 19.
    http://www.ccp14.ac.uk/index.html. Program PCW24.Google Scholar
  20. 20.
    PC-Win, PDF-2, 00-034-0424Google Scholar
  21. 21.
    PC-Win, PDF-2, 00-005-0661.Google Scholar
  22. 22.
    PC-Win, PDF-2, 00-033-0448.Google Scholar
  23. 23.
    PC-Win, PDF-2, 00-026-0509.Google Scholar
  24. 24.
    L. M. Plyasova, T. P. Minyukova, T. M. Yurieva, I. A. Bobrikov, and A. M. Balagurov. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2016, 10, 1172.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. M. Plyasova
    • 1
  • L. S. Dovlitova
    • 1
  • I. I. Simentsova
    • 1
  • I. Yu. Molina
    • 1
  • N. V. Shtertser
    • 1
  • T. P. Minyukova
    • 1
    Email author
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations