Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1631–1638 | Cite as

Phase Transformations in the Mn–Ga–O System Depending on the Preparation Conditions

  • O. S. Venediktova
  • O. A. Bulavchenko
  • T. N. Afonasenko
  • P. G. Tsysul’nikov
  • E. Yu. Gerasimov
  • S. V. Tsybulya


Manganese-gallium samples with cation ratios Mn:Ga = 1:2, 1.5:1.5, and 2:1 are synthesized by coprecipitation with subsequent annealing in air in a temperature range 600–1200 °C. Powder XRD, TEM, and BET methods are used to study the physicochemical characteristics of the samples. It is found that in the air at the annealing temperature of 600 °C finely dispersed low-temperature Mn3–xGaxO4 spinels primarily form in all series, but in the whole temperature range (600–1200 °C) the system is multiphase. Annealing at 800–1200 °C leads to an increase in the concentration of simple oxides (β-Mn3O4 and β-Ga2O3). Only simple α-Mn2O3 and β-Ga2O3 oxides exist in a Mn:Ga = 2:1 series at 800 °C. In the sample with a cation ratio Mn:Ga = 1.5:1.5 annealed in air at 1000 °C, the formation of a superstructure based on the spinel structure is found.


phase transformations manganese-containing double oxides manganese-gallium spinel powder X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Galanov, A. I. Galanov, M. Y. Smirnov, O. I. Sidorova, and L. N. Kurina. Izv. Tomsk. Politekh. Inst., 2005, 308,126.Google Scholar
  2. 2.
    P. G. Tsyrul'nikov. Ross. Khim. Zh., 2007, 51,133.Google Scholar
  3. 3.
    S. I. Galanov, O. I. Sidorova, E. A. Litvak, and K. A. Kosyreva. Izv. Tomsk. Politekh. Inst., 2012, 320,124.Google Scholar
  4. 4.
    M. Tepluchin, M. Casapu, A. Boubnov, H. Lichtenberg, D. Wang, S. Kureti, and J.-D. Grunwaldt. ChemCatChem, 2014, 6, 1763–1773.CrossRefGoogle Scholar
  5. 5.
    O. A. Bulavchenko, T. N. Afonasenko, P. G. Tsyrul'nikov, and S. V. Tsybulya. Appl. Catal., A, 2013, 459,73.CrossRefGoogle Scholar
  6. 6.
    S. V. Tsybulya, G. N. Kryukova, T. A. Kriger, and P. G. Tsyrul'nikov. Kinet. Katal., 2003, 44,318.CrossRefGoogle Scholar
  7. 7.
    O. A. Bulavchenko, S. V. Tsybulya, S. V. Cherepanova, T. N. Afonasenko, and P. G. Tsyrul'nikov. J. Struct. Chem., 2009, 50,497.CrossRefGoogle Scholar
  8. 8.
    O. A. Bulavchenko. Structural Aspects of Activation of Oxide Aluminum-Cobalt and Aluminum-Manganese Catalysts. Diss. … Cand. of Chem. Sc. [in Russian]. Novosibirsk: Institute of Catalysis, Siberian Branch of the RAS, 2010.Google Scholar
  9. 9.
    O. A. Bulavchenko, S. V. Tsybulya, P. G. Tsyrul'nikov, T. N. Afonasenko, S. V. Cherepanova, and E. Yu. Gerasimov. J. Struct. Chem., 2010, 51,518.Google Scholar
  10. 10.
    I. Levin and D. Brandon. J. Am. Ceram. Soc., 1998, 81, 1995.CrossRefGoogle Scholar
  11. 11.
    S. V. Tsybulya and G. N. Kryukova. Phys. Rev. B, 2008, 77, 0241121.CrossRefGoogle Scholar
  12. 12.
    H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton. Chem. -Eur. J., 2013, 19, 2803.CrossRefGoogle Scholar
  13. 13.
    O. S. Venediktova, O. A. Bulavchenko, T. N. Afonasenko, P. G. Tsyrul'nikov, Z. S. Vinokurov, Y. A. Chesalov, and S. V. Tsybulya. J. Alloys Comp., 2017, 725,496.CrossRefGoogle Scholar
  14. 14.
    O. S. Venediktova, O. A. Bulavchenko, P. G. Tsyrul'nikov, T. N. Afonasenko, Z. S. Vinokurov, and S. V. Tsybulya. J. Struct. Chem., 2018, 59,370.CrossRefGoogle Scholar
  15. 15.
    ICDD PDF-4+. Dr. Soorya Kabekkodu, Editor. Newtown Square, PA, USA, 2012.Google Scholar
  16. 16.
    S. V. Tsybulya, S. V. Cherepanova, and L.P. Soloviyova. Zh. Struk. Khim., 1996, 37,332.Google Scholar
  17. 17.
    P. Scherrer. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1918, 1918, 98–100.Google Scholar
  18. 18.
    M. Wojdyr. J. Appl. Crystallogr., 2010, 43, 1126.CrossRefGoogle Scholar
  19. 19.
    P. G. Casado and I. Rasines. Z. Kristallogr., 1982, 160,33.CrossRefGoogle Scholar
  20. 20.
    M. Lensen, A. Michel, and C. R. Hebd. Seances Acad. Sci., 1958, 246, 1997.Google Scholar
  21. 21.
    O. Schmitz-DuMont, H. Brokopf, and K. Burkhardt. Z. Anorg. Allg. Chem., 1958, 295,7.CrossRefGoogle Scholar
  22. 22.
    J. Böhm. Angew. Chem., 1940, 63,131.Google Scholar
  23. 23.
    C. O. Arean, A. L. Bellan, M. P. Mentruit, M. R. Delgado, and G. T. Palomino. Microporous Mesoporous Mater., 2000, 40,35.CrossRefGoogle Scholar
  24. 24.
    K. Pohl. Naturwiss, 1968, 55,82.CrossRefGoogle Scholar
  25. 25.
    M. Zinkevich, F. M. Morales, H. Nitsche, M. Ahrens, M. Rühle, and F. Aldinger. Z. Metallkd., 2004, 95,756.CrossRefGoogle Scholar
  26. 26.
    H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton. Chem. Eur. J., 2013, 19, 2803.CrossRefGoogle Scholar
  27. 27.
    H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton. J. Phys. Chem. C, 2014, 118, 16188.CrossRefGoogle Scholar
  28. 28.
    O. Nikulina, D. Yatsenko, O. Bulavchenko, G. Zenkovets, and S. Tsybulya. Z. Kristallogr., 2016, 231,261.Google Scholar
  29. 29.
    V. F. Balakirev, V. P. Barkhatov, Yu. V. Golikov, and S. G. Maizel. Manganites: Equilibrium and Unstable States [in Russian]. Ekaterinburg: Ural Branch of the RAS, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. S. Venediktova
    • 1
    • 2
  • O. A. Bulavchenko
    • 1
    • 2
  • T. N. Afonasenko
    • 3
  • P. G. Tsysul’nikov
    • 3
  • E. Yu. Gerasimov
    • 1
    • 2
  • S. V. Tsybulya
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations