Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1610–1618 | Cite as

Hirshfeld Surface Analysis, Crystal Structure and Spectroscopic Studies of a New Cu(II) Halocuprate Salt with Protonated N-Amino-Ethyl-Piperazine

  • Maroua El Glaoui
  • Maher El Glaoui
  • C. Jelsch
  • C. Ben Nasr


(C6H18N3)4[CuCl5]2[CuCl4]3·1.42H2O is prepared and characterized by various physicochemical techniques. The single crystal X-ray diffraction structural analysis reveals that the title compound belongs to the orthorhombic system with the space group Cmca. Its unit cell dimensions are: a = 24.286(2) Å, b = 14.3082(14) Å, c = 16.6160(16) Å, Z = 4, V = 5773.8(10) Å3. Its crystal structure is determined and refined down to R = 0.024 and wR(F2) = 0.059. The structure contains three crystallographically independent Cu2+ ions coordinated to chlorine anions in various fashions. Cu1 is five-coordinated in a distorted square pyramidal fashion, while Cu2 and Cu3 are four-coordinated in square planar and distorted tetrahedral fashions, respectively. The entities are interconnected by means of the hydrogen bonding [O(W)–H…Cl, N–H…Cl, C–H…Cl and C–H…O(W)], forming a three-dimensional network. Intermolecular interactions are investigated by Hirshfeld surfaces and the contacts of the eight different chloride atoms are notably compared. The vibrational absorption bands are identified by infrared spectroscopy. The optical study is performed by UV-vis absorption.


organic-inorganic hybrid material Cu(II) complex X-ray diffraction coordination compound Hirshfeld surface infrared and ultraviolet-visible (UV-vis) spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Martin and B. R. Leafblad. Angew. Chem., 1998, 37, 3318–3320.CrossRefGoogle Scholar
  2. 2.
    C. R. Rice, S. Onions, N. Vidal, J. D. Wallis, M.-C. Senna, M. Pilkington, and H. Stoeckli-Evans. Eur. J. Inorg. Chem., 2002, 8, 1985–1997.CrossRefGoogle Scholar
  3. 3.
    R. Bhattacharya, M. S. Ray, R. Dey, L. Righi, G. Bocelli, and A. Ghosh. Polyhedron, 2002, 21, 2561–2565.CrossRefGoogle Scholar
  4. 4.
    A. Weselucha-Birczynska and C. Paluszkiewicz. J. Mol. Struct., 2002, 614, 339–343.CrossRefGoogle Scholar
  5. 5.
    S. F. Haddad, M. A. AlDamen, and R. D. Willet. Inorg. Chim. Acta, 2006, 359, 424–432.CrossRefGoogle Scholar
  6. 6.
    A. R. Parent, C. P. Landee, and M. M. Turnbull. Inorg. Chim. Acta, 2007, 360, 1943–1953.CrossRefGoogle Scholar
  7. 7.
    F. A. Cotton, L. M. Daniels, and P. I. Huang. Inorg. Chem., 2001, 40, 3576–3578.CrossRefGoogle Scholar
  8. 8.
    M. Czugler, L. Kótai, B. Sreedhar, A. Rockenbauer, I. Gács, and S. Holly. Eur. J. Inorg. Chem., 2002, 12, 3298–3304.CrossRefGoogle Scholar
  9. 9.
    N. Lah and R. Clérac. Polyhedron, 2009, 28, 2466–2472.CrossRefGoogle Scholar
  10. 10.
    B. J. Prince, M. M. Turnbull, and R. D. Willett. J. Coord. Chem., 2003, 56, 441–452.CrossRefGoogle Scholar
  11. 11.
    S. N. Herringer, M. M. Turnbull, C. P. Landee, and J. L. Wikaira. J. Coord. Chem., 2009, 62, 863–875.CrossRefGoogle Scholar
  12. 12.
    M. Zdanowska-Fraczek, K. Holderna-Natkaniec, Z. J. Fraczek, and R. Jakubas. Solid State Ion, 2009, 180, 9–12.CrossRefGoogle Scholar
  13. 13.
    I. Chaabane, F. Hlel, and K. Guidara. J. Alloys Compd., 2008, 461, 495–500.CrossRefGoogle Scholar
  14. 14.
    K. Sakai, M. Takemura, and Y. Kawabe. J. Lumin., 2010, 130, 2505–2507.CrossRefGoogle Scholar
  15. 15.
    K. Pradeesh, G. Sharachandar Yadav, M. Singh, and G. Vijaya Prakash. J. Mater. Chem. Phys., 2010, 124, 44–47.CrossRefGoogle Scholar
  16. 16.
    M. Bujak and J. Zaleski. Cryst. Eng., 2001, 4, 241–252.CrossRefGoogle Scholar
  17. 17.
    P. Gomez-Romero. Adv. Mater., 2001, 13, 163–174.CrossRefGoogle Scholar
  18. 18.
    John R. J. Sorenson. J. Med. Chem., 1976, 19, 135–148.CrossRefGoogle Scholar
  19. 19.
    P. M. May and D. R. Williams. Met. Ions Biol. Syst., Helmut Sigel: New York, USA, 1981, 12, 283–317.Google Scholar
  20. 20.
    P. S. Subramanian and D. Srinivas. Polyhedron, 1996, 15, 985–989.CrossRefGoogle Scholar
  21. 21.
    J. Sertucha, A. Luque, F. Lloret, and P. Román. Polyhedron, 1998, 17, 3875–3880.CrossRefGoogle Scholar
  22. 22.
    V. Fernandez, M. Moran, M. T. Gutiérrez-Rios, C. Foces-Foces, and F. H. Cano. Inorg. Chim. Acta, 1987, 128, 239–243.CrossRefGoogle Scholar
  23. 23.
    P. Román, J. Sertucha, A. Luque, L. Lezama, and T. Rojo. Polyhedron, 1996, 15, 1253–1262.CrossRefGoogle Scholar
  24. 24.
    K. M. Guckian, B. A. Schweitzer, R. X. Ren, C. J. Sheils, D. C. Tahmassebi, and E. T. Kool. J. Am. Chem. Soc., 2000, 122, 2213–2222.CrossRefGoogle Scholar
  25. 25.
    Bruker Apex2, Advanced X-ray Solutions Bruker AXS Inc. Madison, Wisconsin, USA, 2009.Google Scholar
  26. 26.
    G. M. Sheldrick. Acta Crystallogr., 2008, A64, 112–122.CrossRefGoogle Scholar
  27. 27.
    Bruker Advanced X-ray Solutions, SHELXTL (Version 6.14), Bruker AXS Inc. Madison, Wisconsin, USA, 2003.Google Scholar
  28. 28.
    G. M. Sheldrick. SHELXL2013, University of Göttingen, Germany, 2013.Google Scholar
  29. 29.
    C. B. Hübschle, G. M. Sheldrick, and B. Dittrich. J. Appl. Crystallogr., 2011, 44, 1281–1284.CrossRefGoogle Scholar
  30. 30.
    K. Brandenburg. Diamond Version 2.0 Impact GbR, Bonn., Germany, 1998.Google Scholar
  31. 31.
    L. Yang, D. R. Powell, and R. P. Houser. Dalton Trans., 2007, 955–964.Google Scholar
  32. 32.
    A. Kessentini, M. Belhouchet, Y. Abid, C. Minot, and T. Mhiri. Spectrochim. Acta A, 2014, 122, 476–481.CrossRefGoogle Scholar
  33. 33.
    D.-H. He, Y.-Y. Di, Z.-C. Tan, F.-F. Yi, W.-Y. Dan, and Y.-P. Liu. Sol. Energy Mater. Sol. Cells, 2011, 95, 2897–2906.CrossRefGoogle Scholar
  34. 34.
    E. P. Aldrich, K. A. Bussey, J. R. Connell, E. F. Reinhart, K. D. Oshin, B. Q. Mercado, and A. G. Oliver. Acta Crystallogr., 2016, E72, 40–43.Google Scholar
  35. 35.
    A. Kessentini, M. Belhouchet, J. J. Suñol, Y. Abid, and T. Mhiri. J. Lumin., 2014, 149, 341–347.CrossRefGoogle Scholar
  36. 36.
    G. R. Willey, M. Ravindran, and M. G. B. Drew. Inorg. Chim. Acta, 1991, 188, 159–162.CrossRefGoogle Scholar
  37. 37.
    A. W. Addison, T. Nageswara Rao, J. Recdijk, J. van Rijn, and G. C. Verschoor. J. Chem. Soc., Dalton Trans., 1984, 1349–1356.Google Scholar
  38. 38.
    D. Cremer. J. Am. Chem. Soc., 1975, 97, 1354–1358.CrossRefGoogle Scholar
  39. 39.
    M. A. Spackman and D. Jayatilaka. CrystEngComm, 2009, 11, 19–32.CrossRefGoogle Scholar
  40. 40.
    B. Guillot, E. Enrique, L. Huder, and C. Jelsch. Acta Crystallogr., 2014, A70, C279.Google Scholar
  41. 41.
    C. Jelsch, S. Soudani, and C. Ben Nasr. IUCrJ, 2015, 2, 327–340.CrossRefGoogle Scholar
  42. 42.
    S. Gunasekaran and B. Anita. Indian J. Pure Appl. Phys., 2008, 46, 833–838.Google Scholar
  43. 43.
    J. Orive, E. S. Larrea, R. F. De Luis, M. Iglesias, J. L. Mesa, T. Rojo, and M. I. Arriortua. Dalton Trans., 2013, 42, 4500–4512.CrossRefGoogle Scholar
  44. 44.
    P. F. Raphael, E. Manoj, and M. R. P. Kurup. Polyhedron, 2007, 26, 818–828.CrossRefGoogle Scholar
  45. 45.
    B. F. Hathaway. In Comprehensive Coordination Chemistry /Ed. G. Wilkinson. Pergamon, Oxford, 1st edn., 1987, 5, 533–774.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Maroua El Glaoui
    • 1
  • Maher El Glaoui
    • 2
  • C. Jelsch
    • 3
  • C. Ben Nasr
    • 1
  1. 1.Laboratoire de Chimie des Matériaux, Faculté des Sciences de BizerteUniversité de CarthageZarzounaTunisia
  2. 2.Laboratoire de Valorisation des Matériaux UtilesCentre National des Recherches en Sciences des Matériaux (CNRSM), Technopôle de Borj-CédriaSolimanTunisia
  3. 3.CRM2, CNRS, Institut Jean BarriolUniversité de LorraineVandoeuvre les NancyFrance

Personalised recommendations