Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1596–1609 | Cite as

Tautomerism in the Sulfonamide Moiety: Synthesis, Experimental and Theoretical Characterizations

  • Z. Ettehadi
  • A. Davoodnia
  • M. Khashi
  • S. Ali Beyramabadi


Following our previous work, we synthesized N-(7-methyl-5,6-diphenyl-2-m-tolyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)benzensulfonamides to study the sulfonylimine-sulfonamide tautomerism. This goal is performed using the density functional theory (DFT). Four plausible isomers including the keto and enol sulfonamide as well as Z and E sulfonimide are considered for each of compounds. The DFT calculations are carried out at the B3LYP/6-31+G(d,p) level of theory. The optimized geometric parameters such as bond lengths and bond angles are calculated. The computed IR vibrational frequencies and 1H NMR chemical shifts are in good agreement with the experimental data. The structure of all compounds is confirmed on the basis of their full spectral data. In all three compounds, the Z-sulfonimide form is more stable than the other isomers. A high energy gap between the frontier orbitals confirms the stability of the compounds.


pyrrolo[2,3-d]pyrimidine DMAP DFT tautomerism intramolecular proton transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Mironova, O. A. Lodochnikova, D. B. Krivolapov, Y. V. Veremeichik, V. V. Plemenkov, and I. A. Litvinov. J. Struct. Chem., 2014, 55,539.CrossRefGoogle Scholar
  2. 2.
    Y. M. Chumakov, V. I. Tsapkov, G. Bocelli, B. Y. Antonsyak, S. A. Palomares-Sánches, R. S. Ortiz, and A. P. Gulya. J. Struct. Chem., 2006, 47,923.CrossRefGoogle Scholar
  3. 3.
    A. P. Keche, G. D. Hatnapure, R. H. Tale, A. H. Rodge, and V. M. Kamble. Bioorg. Med. Chem. Lett., 2012, 22, 6611.CrossRefGoogle Scholar
  4. 4.
    J. Blickle and J. Brogard. Sulfonamides Hypoglyc+ Miants: Nouvelles Donn+ES Pharmacologiques et Implicationspratiques, 2008.Google Scholar
  5. 5.
    N. Patel and V. Patel. Pharm. Chem. J., 2010, 44,438.CrossRefGoogle Scholar
  6. 6.
    S. Pattan, P. Kekare, N. Dighe, V. Kothiwale, R. Shete, D. Musmade, and S. Parjane. Indian Drugs, 2010, 47,14.Google Scholar
  7. 7.
    A. A. Farag, S. N. Abd-Alrahman, G. F. Ahmed, R. M. Ammar, Y. A. Ammar, and S. Y. Abbas. Arch. Pharm., 2012, 345,703.CrossRefGoogle Scholar
  8. 8.
    P. T. Flaherty, T. D. Greenwood, A. L. Manheim, and J. F. Wolfe. J. Med. Chem., 1996, 39, 1509.CrossRefGoogle Scholar
  9. 9.
    A. Casini, A. Scozzafava, and C. T. Supuran. Expert Opin. Ther. Pat., 2002, 12(9), 1307–1327.CrossRefGoogle Scholar
  10. 10.
    P. A. Boriack, D. W. Christianson, J. Kingery-Wood, and G. M. Whitesides. J. Med. Chem., 1995, 38, 2286.CrossRefGoogle Scholar
  11. 11.
    N. Büyükkidan, B. Büyükkidan, M. Bülbül, R. Kasimogullari, M. Serdar, and S. Mert. J. Pharm. Pharmacol., 2013, 65,363.CrossRefGoogle Scholar
  12. 12.
    H. M. Aly. Phosphorus, Sulfur, and Silicon, 2009, 185,211.CrossRefGoogle Scholar
  13. 13.
    S. A. Rostom. Biorg. Med. Chem., 2006, 14, 6475.CrossRefGoogle Scholar
  14. 14.
    M. M. Ghorab, F. A. Ragab, H. I. Heiba, H. A. Youssef, and M. G. El-Gazzar. Med. Chem. Res., 2012, 21, 1376.CrossRefGoogle Scholar
  15. 15.
    N. S. El-Sayed, E. R. El-Bendary, S. M. El-Ashry, and M. M. El-Kerdawy. Eur. J. Med. Chem., 2011, 46, 3714.CrossRefGoogle Scholar
  16. 16.
    G. Acs, E. Reich, and M. Mori. Proc. Natl. Acad. Sci., 1964, 52,493.CrossRefGoogle Scholar
  17. 17.
    M. S. Mohamed, A. E. Rashad, M. E. Zaki, and S. S. Fatahala. Acta Pharm., 2005, 55,237.Google Scholar
  18. 18.
    A. Gangjee, O. A. Namjoshi, J. Yu, M. A. Ihnat, J. E. Thorpe, and L. A. Warnke. Biorg. Med. Chem., 2008, 16, 5514.CrossRefGoogle Scholar
  19. 19.
    M. S. Mohamed, R. Kamel, and S. S. Fatahala. Eur. J. Med. Chem., 2010, 45, 2994.CrossRefGoogle Scholar
  20. 20.
    K. M. H. Hilmy, M. M. Khalifa, M. a. A. Hawata, R. M. A. Keshk, and A. A. El-Torgman. Eur. J. Med. Chem., 2010, 45, 5243.CrossRefGoogle Scholar
  21. 21.
    R. M. Campbell, C. Cartwright, W. Chen, Y. Chen, E. Duzic, J.-M. Fu, M. Loveland, R. Manning, B. Mckibben, and C. M. Pleiman. Bioorg. Med. Chem. Lett., 1999, 9, 2413.CrossRefGoogle Scholar
  22. 22.
    B. Kuzu and N. Menges. Spectrochim. Acta, Part A, 2016, 162,61.CrossRefGoogle Scholar
  23. 23.
    Z. Sadeghzade, S. A. Beyramabadi, and A. Morsali. Spectrochim. Acta, Part A, 2015, 138,637.CrossRefGoogle Scholar
  24. 24.
    H. Eshtiagh-Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. Beheshti, A. A. Esmaeili, M. J. Khoshkholgh, and A. Morsali. Spectrochim. Acta, Part A., 2008, 71, 1341.CrossRefGoogle Scholar
  25. 25.
    H. Eshtiagh-Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, and M. J. Khoshkholgh. Spectrochim. Acta, Part A., 2011, 78, 1046.CrossRefGoogle Scholar
  26. 26.
    S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, and A. Esmaeili. J. Struct. Chem., 2012, 53,460.CrossRefGoogle Scholar
  27. 27.
    S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, and A. A. Esmaeili. Spectrochim. Acta, Part A, 2011, 83,467.CrossRefGoogle Scholar
  28. 28.
    H. Eshtiagh-Hosseini, S. A. Beyramabadi, A. Morsali, M. Mirzaei, H. Chegini, M. Elahi, and M. A. Naseri. J. Mol. Struct., 2014, 1072,187.CrossRefGoogle Scholar
  29. 29.
    P. Leyton, C. Paipa, A. Berrios, A. Zárate, M. V. Castillo, and S. A. Brandán. J. Mol. Struct., 2013, 1031,110.CrossRefGoogle Scholar
  30. 30.
    M. Khashi, A. Davoodnia, and J. Chamani. Phosphorus, Sulfur Silicon Relat. Elem., 2014, 189,839.CrossRefGoogle Scholar
  31. 31.
    A. Davoodnia, M. Khashi, N. Tavakoli-Hoseini, R. Moloudi, and H. A. Zamani. Monatshefte für Chemie-Chemical Monthly, 2013, 144,677.CrossRefGoogle Scholar
  32. 32.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Gaussian 03, revision B. 05. Gaussian, Inc., Pittsburgh, PA, 2003, 12478.Google Scholar
  33. 33.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37,785.CrossRefGoogle Scholar
  34. 34.
    D. C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. 2001.CrossRefGoogle Scholar
  35. 35.
    R. Ditchfield. Mol. Phys., 1974, 27,789.CrossRefGoogle Scholar
  36. 36.
    G. Zhurko and D. Zhurko. Chemcraft 1.7, 2013.Google Scholar
  37. 37.
    E. Pretsch, P. Bühlmann, C. Affolter, E. Pretsch, P. Bhuhlmann, and C. Affolter. Structure determination of organic compounds. Springer, 2009.Google Scholar
  38. 38.
    G. Huschek, D. Hollmann, N. Kurowski, M. Kaupenjohann, and H. Vereecken. Chemosphere, 2008, 72, 1448.CrossRefGoogle Scholar
  39. 39.
    K. Govindarasu, E. Kavitha, and N. Sundaraganesan. Spectrochim. Acta, Part A, 2014, 133,417.CrossRefGoogle Scholar
  40. 40.
    D. Ware, D. Mackie, P. Brothers, and W. Denny. Polyhedron, 1995, 14, 1641.CrossRefGoogle Scholar
  41. 41.
    M. Snehalatha, C. Ravikumar, I. H. Joe, N. Sekar, and V. Jayakumar. Spectrochim. Acta, Part A, 2009, 72,654.CrossRefGoogle Scholar
  42. 42.
    N. Tezer and N. Karakus. J. Mol. Model., 2009, 15,223.CrossRefGoogle Scholar
  43. 43.
    N. Özdemir, M. Dinçer, A. Çukurovali, and O. Büyükgüngör. J. Mol. Model., 2009, 15, 1435.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Z. Ettehadi
    • 1
  • A. Davoodnia
    • 1
  • M. Khashi
    • 2
  • S. Ali Beyramabadi
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Young Researchers and Elite Club, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations