Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1588–1595 | Cite as

Physicochemical Properties and Structure of SiCxNy:Fe Films Grown From a Gas Mixture of Ferrocene, Hydrogen and 1,1,3,3,5,5-Hexamethylcyclotrisilazane

  • N. I. FainerEmail author
  • R. V. Pushkarev
  • S. B. Ehrenburg
  • S. V. Trubina
  • V. A. Shestakov
  • I. S. Merenkov
  • M. Terauchi


Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and EXAFS spectroscopy are used to study the composition and structure of SiCxNy:Fe films obtained by chemical vapor deposition (CVD) in the Fe–Si–C–N–H system from a mixture of hydrogen, ferrocene (C5H5)2Fe, and organosilicon compound 1,1,3,3,5,5–hexamethylcyclotrisilazane (HMCTS) C6H21N3Si3. The films are deposited under low pressures (LPCVD) at 1123–1273 K, and their phase composition at 300–1300 K is predicted using thermodynamic modeling. The obtained films are nanocomposites with amorphous matrices containing α-Fe crystallites and carbon clusters with a size of 5–10 nm.


nanocomposite films thermodynamic modeling CVD 1,1,3,3,5,5-hexamethylcyclotrisilazane ferrocene Raman HRTEM and EXAFS spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Sverdlov and S. Selberherr. Phys. Rep., 2015, 585,1.CrossRefGoogle Scholar
  2. 2.
    D. D. Awschalom and M. E. Flatté. Nat. Phys., 2007, 3,153.CrossRefGoogle Scholar
  3. 3.
    M. J. Mutch, P. M. Lenahan, and S. W. King. Appl. Phys. Lett., 2016, 109,1.CrossRefGoogle Scholar
  4. 4.
    W. Liu, H. Zhang, J. A. Shi, et al. Nat. Commun., 2016, 7, 13497.CrossRefGoogle Scholar
  5. 5.
    A. Gueddim, M. E. Madjet, S. Zerroug, et al. Opt. Quantum Electron., 2016, 48,551.CrossRefGoogle Scholar
  6. 6.
    Y. Köseoglu. Ceram. Int., 2015, 41, 11655.CrossRefGoogle Scholar
  7. 7.
    D. Saikia and J. P. Borah. J. Mater. Sci. Mater. Electron., 2017, 28, 8029.CrossRefGoogle Scholar
  8. 8.
    N. I. Fainer, M. L. Kosinova, Y. M. Rumyantsev, et al. J. Phys. Chem. Solids, 2008, 69,661.CrossRefGoogle Scholar
  9. 9.
    Y. Wang, T. Jiang, L. Zhang, et al. J. Am. Ceram. Soc., 2009, 92, 1603.CrossRefGoogle Scholar
  10. 10.
    Y. Gou, X. Tong, Q. Zhang, et al. Ceram. Int., 2016, 42,681.CrossRefGoogle Scholar
  11. 11.
    Q. Sun, K. Xu, J. W. Y. Lam, et al. Mater. Sci. Eng. C, 2001, 16,107.CrossRefGoogle Scholar
  12. 12.
    Q. Sun, J. W. Y. Lam, K. Xu, et al. Chem. Mater., 2000, 12, 2617.CrossRefGoogle Scholar
  13. 13.
    L. Wang, Q. Qi, P. Cai, et al. Scr. Mater., 2017, 126,11.CrossRefGoogle Scholar
  14. 14.
    J. Kong, M. Kong, X. Zhang, et al. ACS Appl. Mater. Interfaces, 2013, 5, 10367.CrossRefGoogle Scholar
  15. 15.
    A. Francis, E. Lonescu, C. Fasel, et al. Inorg. Chem., 2009, 48, 10078.CrossRefGoogle Scholar
  16. 16.
    R. V. Pushkarev, N. I. Fainer, and K. K. Maurya. J. Struct. Chem., 2015, 56(6), 1176.CrossRefGoogle Scholar
  17. 17.
    R. V. Pushkarev, N. I. Fainer, A. N. Golubenko, Glass Phys. Chem, 2016, 42,490.CrossRefGoogle Scholar
  18. 18.
    R. V. Pushkarev, N. I. Fainer, and K. K. Maurya. Superlattices Microstruct., 2017, 102,119.CrossRefGoogle Scholar
  19. 19.
    N. I. Fainer, R. V. Pushkarev, V. A. Shestakov, and A. K. Gutakovskii. J. Struct. Chem., 2017, 58(8), 1493.CrossRefGoogle Scholar
  20. 20.
    A. N. Golubenko, M. L. Kosinova, V. A. Titov, Thin Solid Films, 1997, 293,11.CrossRefGoogle Scholar
  21. 21.
    F. A. Kuznetsov, V. A. Titov, A. A. Titov, et al. Proc. Int. Symp. Adv. Mater., 1995,24.Google Scholar
  22. 22.
    N. I. Fainer, R. V. Pushkarev, A. N. Golubenko, et al. Glass Phys. Chem, 2015, 41,853.CrossRefGoogle Scholar
  23. 23.
    N. I. Fainer, A. N. Golubenko, Yu. M. Rumyansev, et al. Glass Phys. Chem, 2009, 35,274.CrossRefGoogle Scholar
  24. 24.
    N. Fainer, Yu. Rumyantsev, M. Kosinova, et al. Surf. Coat. Technol., 2007, 201, 9269.CrossRefGoogle Scholar
  25. 25.
    Y. Awad., M. A. El Khakani, C. Aktik, et al. Surf. Coat. Technol., 2009, 204,539.CrossRefGoogle Scholar
  26. 26.
    O. Baake, N. I. Fainer, P. Hoffmann, et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 603,174.CrossRefGoogle Scholar
  27. 27.
    R. Di Mundo, F. Palumbo, F. Fracassi, et al. Plasma Processes Polym., 2009, 6,506.CrossRefGoogle Scholar
  28. 28.
    Y. Wang, L. Zhang, W. Xu, et. al. J. Am. Ceram. Soc., 2008, 91, 3971.CrossRefGoogle Scholar
  29. 29.
    T. Varga, A. Navrotsky, J. L. Moats, J. Am. Ceram. Soc., 2007, 90, 3213.CrossRefGoogle Scholar
  30. 30.
    S. Trassl, M. Puchinger, E. Rossler, and G. Ziegler. J. Eur. Ceram. Soc., 2003, 23,781.CrossRefGoogle Scholar
  31. 31.
    O. Durand-Drouhin, M. Lejeune, M. Clin, and J. Henocque. Mater. Sci. Semicond. Process., 2001, 4,335.CrossRefGoogle Scholar
  32. 32.
    R. Kurt, R. Sanjines, A. Karimi, and F. Levy. Diamond Relat. Mater., 2000, 9,566.CrossRefGoogle Scholar
  33. 33.
    JCPDS International Center for Diffraction Data.1988. USA. Card no. 6–0696.Google Scholar
  34. 34.
    R. V. Pushkarev, N. I. Fainer, H. Katsui, et al. Mater. Des., 2018, 137, 422.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. I. Fainer
    • 1
    Email author
  • R. V. Pushkarev
    • 1
  • S. B. Ehrenburg
    • 1
  • S. V. Trubina
    • 1
  • V. A. Shestakov
    • 1
  • I. S. Merenkov
    • 1
  • M. Terauchi
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.IMRAMTohoku UniversitySendaiJapan

Personalised recommendations