Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1534–1543 | Cite as

Qualitative and Quantitative Study on Internal Rotation During Tautomerization of Thione, Selenone, and Tellurone

  • J. G. Elambalassery
  • S. Sreedevi
Article
  • 16 Downloads

Abstract

Internal rotation during the tautomerization of simple acetone analogues of sulfur, selenium, and tellurium is investigated in detail both qualitatively and quantitatively. An enhanced HOMO-LUMO gap and thus, an increased stability in the product, which is evident from the qualitative analysis of frontier molecular orbitals of different rotamers of enol analogues, can be attributed to the consequences of this internal rotation. The effect of various substituents on the reaction mechanism and tautomerization energy is also investigated.

Keywords

tautomerization thione enethiol internal rotation selenone tellurone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Perez and A. Toro-Labbe. J. Phys. Chem. A, 2000, 104, 1557.CrossRefGoogle Scholar
  2. 2.
    Y. Valadbeigi and H. Farrokhpour. Struct. Chem., 2015, 26,539.CrossRefGoogle Scholar
  3. 3.
    V. V. Sliznev and G. V. Girichev. J. Struct. Chem., 2011, 52(1),16.CrossRefGoogle Scholar
  4. 4.
    I. F. Dautova, S. P. Ivanov, and S. L. Khursan. J. Struct. Chem., 2009, 50(6), 1104–1113.CrossRefGoogle Scholar
  5. 5.
    V. B. Delchev. J. Struct. Chem., 2004, 45(4), 570–578.CrossRefGoogle Scholar
  6. 6.
    C. Jacob, G. I. Giles, N. M. Giles, and H. Sies. Angew. Chem., Int. Ed., 2003, 42, 4742.CrossRefGoogle Scholar
  7. 7.
    A. Tamilselvi and G. Mugesh. Bioorg. Med. Chem. Lett., 2010, 20, 3692.CrossRefGoogle Scholar
  8. 8.
    E. Strauss, H. Zhai, L. A. Brand, F. W. McLafferty, and T. P. Begley. J. Biochem., 2004, 43, 15520.CrossRefGoogle Scholar
  9. 9.
    P. N. Jayaram, G. Roy, and G. Mugesh. J. Chem. Sci., 2008, 120,143.CrossRefGoogle Scholar
  10. 10.
    T. Kupke, C. Kempter, G. Jung, and F. Gotz. J. Biochem., 1995, 270, 11282.Google Scholar
  11. 11.
    T. Kupke and F. Götz. J. Biol. Chem., 1997, 272, 4759.CrossRefGoogle Scholar
  12. 12.
    O. S. Jung, Y. A. Lee, Y. T. Kim, and H. K. Chae. Inorg. Chim. Acta, 2000, 299,100.CrossRefGoogle Scholar
  13. 13.
    A. N. Chermhini, M. Abedi, H. Farrokhpour, et al. J. Mol. Model., 2013, 19, 4377.CrossRefGoogle Scholar
  14. 14.
    A. A. Isab and S. Ahmad. Transition Met. Chem., 2006, 31,500.CrossRefGoogle Scholar
  15. 15.
    D. J. Procter. J. Chem. Soc., Perkin Trans. 1, 2001, 2001,335.CrossRefGoogle Scholar
  16. 16.
    G. Steiner, H. Kopacka, K. Ongania, et al. Eur. J. Inorg. Chem., 2005, 2005, 1325.CrossRefGoogle Scholar
  17. 17.
    I. A. Alswaidan, K. Sooknah, L. Rhyman, et al. Comput. Biol. Chem., 2017, 68,56.CrossRefGoogle Scholar
  18. 18.
    C. Trujillo, O. Mo, and M. Yanez. Org. Biomol. Chem., 2007, 5, 3092.CrossRefGoogle Scholar
  19. 19.
    Y. Rong, A. Al-Harbi, B. Kriegel, and G. Parkin. Inorg. Chem., 2013, 52, 7172.CrossRefGoogle Scholar
  20. 20.
    D. Delaere, G. Raspoet, and M. T. Nguyen. J. Phys. Chem. A, 1999, 103,171.CrossRefGoogle Scholar
  21. 21.
    P. E. Allegretti, D. Asen, M. M. Schiavoni, et al. ARKIVOC, 2004, 2003,134.CrossRefGoogle Scholar
  22. 22.
    S. Sklenak, Y. Apeloig, and Z. Rappoport. J. Chem. Soc., Perkin Trans. 2, 2000, 11, 2269.CrossRefGoogle Scholar
  23. 23.
    P. E. Allegretti, M. M. Schiavoni, M. S. Cortizo, et al. Int. J. Mol. Sci., 2004, 5,294.CrossRefGoogle Scholar
  24. 24.
    C. H. Chuang and M. H. Lien. J. Phys. Chem. A, 2004, 108, 1790.CrossRefGoogle Scholar
  25. 25.
    A. J. Kresge and Q. Meng. J. Am. Chem. Soc., 1998, 120, 11830.CrossRefGoogle Scholar
  26. 26.
    X. Zhang, D. Malick, and G. A. Petersson. J. Org. Chem., 1998, 63, 5314.CrossRefGoogle Scholar
  27. 27.
    B. Boekfa, P. Pantu, M. Probst, and J. Limtrakul. J. Phys. Chem. C, 2010, 114, 15061.CrossRefGoogle Scholar
  28. 28.
    Y. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2006, 120,215.CrossRefGoogle Scholar
  29. 29.
    E. G. Jayasree and S. Soorya. Int. J. Quantum Chem., 2017, 117, e25427.CrossRefGoogle Scholar
  30. 30.
    L. A. Lajohn, P. A. Christiansen, R. B. Ross, et al. J. Chem. Phys., 1987, 87, 2812.CrossRefGoogle Scholar
  31. 31.
    W. R. Wadt and P. J. Hay. J. Chem. Phys., 1985, 82,299.CrossRefGoogle Scholar
  32. 32.
    M. Cossi, N. Rega, G. Scalmani, and V. Barone. J. Comput. Chem., 2003, 24,669.CrossRefGoogle Scholar
  33. 33.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  34. 34.
    J. Ren, W. Liang, and M. H. Whangbo. CAESAR 2.0, PrimeColor Software. Inc., Cary, North Carolina, USA, 1998.Google Scholar
  35. 35.
    R. F. Quiñones, M. Q. Rojas, G. Cuevas, and G. J. M. Rejón. Molecules, 2012, 17, 4661.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KeralaKeralaIndia

Personalised recommendations