Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1518–1533 | Cite as

Molecular Adducts of Isoniazid: Crystal Structure, Electronic Properties, and Hirshfeld Surface Analysis

  • A. S. Kamalakaran


Three molecular adducts of the antituberculosis drug isoniazid (INH) are synthesized with γ-resorcylic acid (γRA), phloroglucinol (PG), and gallic acid (GA). The new solid phases are preliminarily characterized by the thermal analysis (DSC/TGA) and powder X-ray diffraction. The formation of new solid phases is confirmed by single crystal X-ray diffraction, infrared (FT-IR) and Raman spectroscopy. All three new solid crystalline forms are stabilized by various hydrogen bonding interactions such as N+···H–O, N···H–O, O···H–O, and ππ stacking. The FT-IR analysis puts forward that the solid form of INH1 is a salt whereas the INH2 and INH3 molecular complexes are cocrystals. We have also investigated the density of states (DOS), band structure, and atomic orbit projected density of state (PDOS) of title compounds by adopting the density functional theory (DFT) technique in the local density approximation (LDA). The electronic structure calculations show that energy states are delocalized in the k-space due the hydrogen and covalent bonds in the crystals. The frontier molecular orbital (FMO) analysis reveals that charge transfer takes place within the compounds. The Hirshfeld analysis shows that H–H and N⋯H–O hydrogen bonding interactions are dominant in all three molecular adducts of INH.


isoniazid cocrystals molecular salts X-ray diffraction studies Hirshfeld analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Desiraju. Acc. Chem. Res., 2002, 35,565.CrossRefGoogle Scholar
  2. 2.
    B. Moulton and M. J. Zaworotko. Chem. Rev., 2001, 101, 1629–1658.CrossRefGoogle Scholar
  3. 3.
    L. MacGillivray. CrystEngComm., 2004, 6, 77/78.CrossRefGoogle Scholar
  4. 4.
    C. B. Aakeroy and D. J. Salmon. CrystEngComm, 2005, 7, 439–448.CrossRefGoogle Scholar
  5. 5.
    M. C. Etter. Acc. Chem. Res., 1990, 23, 120–126.CrossRefGoogle Scholar
  6. 6.
    P. Sanphui, G. Bolla, and A. Nangia. Cryst. Growth Des., 2012, 12(4), 2023–2036.CrossRefGoogle Scholar
  7. 7.
    F. T. Martins, R. Bonfilio, M. B. D. Araujo, and J. Ellena. J. Pharm. Sci., 2012, 101, 2143–2154.CrossRefGoogle Scholar
  8. 8.
    A. T. M. Serajuddin. Adv. Drug Delivery Rev., 2007, 59, 603–616.CrossRefGoogle Scholar
  9. 9.
    A. Lemmerer. CrystEngComm, 2012, 14, 2465–2478.CrossRefGoogle Scholar
  10. 10.
    Ö. Almarsson and M. J. Zaworotko. Chem. Commun., 2004, 0, 1889–1896.CrossRefGoogle Scholar
  11. 11.
    N. Blagden, M. de Matas, P. T. Gavan, and P. York. Adv. Drug Delivery Rev., 2007, 59, 617–630.CrossRefGoogle Scholar
  12. 12.
    P. H. Stahl and C. G. Wermuth. Ed. Verlag Helvetica Chimica Acta, Zurich, 2002.Google Scholar
  13. 13.
    R. C. Rowe, P. J. Sheskey, and S. C. Owen. Ed. APhA Publications, 5th edn, 2005.Google Scholar
  14. 14.
    USP DI®, vol. I, 15th ed. 1627, 1995.Google Scholar
  15. 15.
    A. Lemmerer, J. Bernstein, and V. Kahlenberg. CrystEngComm, 2010, 12, 2856–2864.CrossRefGoogle Scholar
  16. 16.
    P. Grobely, A. Mukherjee, and G. R. Desiraju. CrystEngComm, 2011, 13, 4358–4364.CrossRefGoogle Scholar
  17. 17.
    N. Ravikumar, G. Gopikrishna, and K. Anand Solomon. J. Mol. Struct., 2013, 1033, 272–279.CrossRefGoogle Scholar
  18. 18.
    A. Lemmerer, J. Bernstein, and V. Kahlenberg. J. Chem. Crystallogr., 2011, 41, 991–997.CrossRefGoogle Scholar
  19. 19.
    S. Cherukuveda and A. Nangia. CrystEngComm, 2012, 14, 2579–2588.CrossRefGoogle Scholar
  20. 20.
    J. G. da Silva Filho, V. N. Freire, E. W. S. Caetano, L. O. Ladeira, U. L. Fulco, and E. L. Albuquerque. Chem. Phys. Lett., 2013, 587, 20–24.CrossRefGoogle Scholar
  21. 21.
    X.-G. Meng, Y.-L. Xiao, H. Zhang, and C.-S. Zhou. Acta. Crystallogr., Sect. C, 2008, 64, o261–o263.CrossRefGoogle Scholar
  22. 22.
    I. Sarcevica, L. Orola, M. V. Veidis, A. Podjava, and S. Belyakov. Cryst. Growth Des., 2013, 13, 1082–1090.CrossRefGoogle Scholar
  23. 23.
    N. Saikia, S. K. Pati, and R. C. Deka. Appl. Nanosci., 2012, 2, 389–400.CrossRefGoogle Scholar
  24. 24.
    B. Barbielini and A. Shukla. Phys. Rev. B, 2002, 66, 235101.CrossRefGoogle Scholar
  25. 25.
    Bruker APEX2, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.Google Scholar
  26. 26.
    A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi. J. Appl. Crystallogr., 1993, 26, 343–350.CrossRefGoogle Scholar
  27. 27.
    G. M. Sheldrick. Acta Crystallogr., 2008, A64, 112–122.CrossRefGoogle Scholar
  28. 28.
    M. Segall, P. Linda, M. Probert, C. Pickard, C. Hasnip, S. Clark, and M. Payne. Materials Studio CASTEP, version 2.2. AccelrysSan Diego, CA, 2002.Google Scholar
  29. 29.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  30. 30.
    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Crystal Explorer, version 1.5, University of Western Australia: Perth, Australia, 2007.Google Scholar
  31. 31.
    F. P. A. Fabbiani, L. T. Byrne, J. J. McKinnon, and M. A. Spackman. CrystEngComm, 2007, 9, 728–731.CrossRefGoogle Scholar
  32. 32.
    A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman, and C. C. Wilson. CrystEngComm, 2007, 9, 648–652.CrossRefGoogle Scholar
  33. 33.
    M. A. Elbagerma, H. G. M. Edwards, T. Munshi, M. D. Hargreaves, P. Matousek, and I. J. Scowen. Cryst. Growth Des., 2010, 10, 2360–2371.CrossRefGoogle Scholar
  34. 34.
    S. L. Childs, G. P. Stahly, and A. Park. Mol. Pharmaceutics, 2007, 4, 323–338.CrossRefGoogle Scholar
  35. 35.
    R. M. Silverstein and F. X. Webster. Spectrometric identification of organic compounds 6th edn. Wiley, New York, 1998.Google Scholar
  36. 36.
    E. Spinner. J. Chem. Soc., 1962, 10, 3119.CrossRefGoogle Scholar
  37. 37.
    P. Bassignana, C. Cogrossi, and M. Gaudino. Spectrochim. Acta, 1963, 19, 1885–1897.CrossRefGoogle Scholar
  38. 38.
    T. Thakuria and A. Nangia. CrystEngComm, 2011, 13, 1759–1764.CrossRefGoogle Scholar
  39. 39.
    J. F. Remenar, M. L. Peterson, P. W. Stephens, Z. Zhang, Y. Zimenkov, and M. B. Hickey. Mol. Pharmaceutics, 2007, 4, 386–400.CrossRefGoogle Scholar
  40. 40.
    T. A. Koopmans. Atoms Physica, 1934, 1, 104–113.Google Scholar
  41. 41.
    P. Sjoberg and P. Politzer. J. Phys. Chem., 1990, 94, 3959–3961.CrossRefGoogle Scholar
  42. 42.
    J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Chem. Commun., 2007, 12, 3814–3816.CrossRefGoogle Scholar
  43. 43.
    M. A. Spackman and D. Jayatilaka. CrystEngComm, 2009, 11, 19–32.CrossRefGoogle Scholar
  44. 44.
    M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. CrystEngComm, 2011, 13, 1804–1813.CrossRefGoogle Scholar
  45. 45.
    M. A. Spackman, J. J. McKinnon, and D. Jayatilaka. CrystEngComm, 2008, 10, 377–388.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, School of EngineeringDayananda Sagar UniversityKudlu Gate, BangaloreIndia

Personalised recommendations