Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1492–1499 | Cite as

Ab Initio Studies of Complexation of Gallic Acid in Aqueous Solutions

  • K. R. GrigoryanEmail author
  • A. L. Zatikyan
Article

Abstract

By an ab initio Hartree-Fock method at the (6-311+G*) level of theory the structural and energy characteristics of gallic acid (GA) complexes are calculated with and without taking into account the first hydration shell: GA–GA, GA–H2O, GA–H2O–GA and GA–H2O–GA (+6 water molecules), GA–GA (+8 water molecules). The calculations are carried out in the vacuum and aqueous solutions by the selfconsistent reaction field method (SCRF calculations). The solvent effect is studied using the Onsager model. The effect of the medium on the geometry, dipole moment, and stability of the considered complexes is estimated. The most stable structures of the complexes, their geometric parameters and atomic charges are determined and the vibrational spectra are calculated. In the aqueous medium, the GA–GA complex (ΔEint =–12.9758 kcal/mol) is found to be the most stable as compared to GA–H2O and GA–H2O–GA. It is shown that the involvement of solvent molecules as the first hydration shell significantly affects the structure and stability of GA complexes.

Keywords

gallic acid complexation dimerization ab initio calculations SCRF calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Williams, J. P. Spencer, and C. Rice–Evans. Free Radical Biol. Med., 2004, 36(7), 838.CrossRefGoogle Scholar
  2. 2.
    H. Akiyama, K. Fuji, O. Yamasaki, et al. J. Antimicrob. Chemother., 2001, 48, 487.CrossRefGoogle Scholar
  3. 3.
    O. V. Azarova and L. P. Galaktionova. Khim. Rastit. Syr′ya, 2010, (4), 61.Google Scholar
  4. 4.
    P. Grundhöfer, R. Niemetz, G. Schilling, et al. Phytochem., 2001, 57, 915.CrossRefGoogle Scholar
  5. 5.
    K. R. Grigoryan and A. A. Shiladzhan. Zh. Bioorg. Khim., 2017, 43(2), 1.Google Scholar
  6. 6.
    K. R. Grigoryan and L. S. Sargsyan. Zh. Fiz. Khim., 2012, (12), 1889.Google Scholar
  7. 7.
    F. Billes, I. Mohammed–Ziegler, and P. Bombicz. Vibr. Spectr., 2007, 43, 193.CrossRefGoogle Scholar
  8. 8.
    M. J. Frisch, et al. Gaussian 03, Revision B04, Gaussian. Inc., Pittsburgh, PA, 2003.Google Scholar
  9. 9.
    M. J. Frisch, et al. Gaussian 09, Revision D.1, Gaussian. Inc., CT 06492, USA, 2009.Google Scholar
  10. 10.
    A. Frisch, A. B. Nielson, and A. J. Holder. GaussviewUser′s Manual. Pittsburgh: Gaussian Inc., 2000.Google Scholar
  11. 11.
    A. Frisch, M. J. Frisch, F. R. Clemente, and G. W. Trucks. Gaussian 09 User′s Reference, second edition. USA: Gaussian, Inc., 2013, 423.Google Scholar
  12. 12.
    M. E. Soloviev and M. M. Soloviev. Computer Chemistry [in Russian], SOLON–Press, Moscow, 2005.Google Scholar
  13. 13.
    M. W. Wong, K. B. Wiberg, and M. J. Frisch. J. Chem. Phys., 1991, 95, 8991.CrossRefGoogle Scholar
  14. 14.
    M. W. Wong, K. B. Wiberg, and M. J. Frisch. J. Am. Chem. Soc., 1992, 114, 1645.CrossRefGoogle Scholar
  15. 15.
    J. B. Foresman and Æ. Frisch. Exploring Chemistry with electronic structure methods. 2–nd ed. Pittsburgh: Gaussian, Inc., 1996.Google Scholar
  16. 16.
    F. Jensen. Introduction to computational chemistry. 2–nd ed. England: John Wiley and Sons, Ltd, 2007.Google Scholar
  17. 17.
    J. H. Lim, E. K. Lee, and Y. Kim. J. Phys. Chem. A, 1997, 101, 2233.CrossRefGoogle Scholar
  18. 18.
    S. A. Markarian, A. L. Zatikyan, S. Bonora, and C. Fagnano. J. Mol. Struct., 2003, 665, 285.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Erevan State UniversityYerevanArmenia

Personalised recommendations