Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1484–1491 | Cite as

Oxidation of FO and N2 Molecules on the Surfaces of Metal-Adopted Boron Nitride Nanostructures as Efficient Catalysts

  • A. Pourabadeh
  • B. Nasrollahzadeh
  • R. Razavi
  • A. Bozorgian
  • M. Najafi
Article
  • 4 Downloads

Abstract

It is of high importance to finding efficient catalysts for oxidation of nitrogen (N2) and fluorine monoxide (FO) molecules. In this study, Ge–B36N36 and Sn–BNNT are formed and the surfaces of Ge–B36N36 and Sn–BNNT via the O2 molecule are activated. Oxidation of N2 and FO on the surfaces of O2–Ge–B36N36 and O2–Sn–BNNT via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms are investigated. The results show that O2–Ge–B36N36 and O2–Sn–BNNT can oxidize the N2 and FO molecules via two-step reactions, respectively. Results show that N2 and FO oxidation on the O2–Ge–B36N36 and O2–Sn–BNNT surfaces via the LH mechanism has a lower energy barrier than that of the ER mechanism. Finally, O2–Ge–B36N36 and O2–Sn–BNNT are acceptable catalysts with a high performance for the oxidation of N2 and FO molecules, respectively.

Keywords

catalyst nanostructure metal adoption oxidation reaction adsorption energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Zhang, B. Yoon, and U. Landman. J. Am. Chem. Soc., 2007, 129, 2228/2229.CrossRefGoogle Scholar
  2. 2.
    J. Zhang, H. Jin, M. B. Sullivan, F. C. H. Lim, and P. Wu. Phys. Chem. Chem. Phys., 2009, 11, 1441–1446.CrossRefGoogle Scholar
  3. 3.
    N. Lopez, T. Janssens, B. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. Nørskov. J. Catal., 2004, 223, 232–235.CrossRefGoogle Scholar
  4. 4.
    H.–Y. Su, M.–M. Yang, X.–H. Bao, and W.–X. Li. J. Phys. Chem. C, 2008, 112, 17303–17310.CrossRefGoogle Scholar
  5. 5.
    S. Piccinin and M. Stamatakis. ACS Catal., 2014, 4, 2143–2152.CrossRefGoogle Scholar
  6. 6.
    M. S. Chen, Y. Cai, Z. Yan, K. K. Gath, S. Axnanda, and D. W. Goodman. Surf. Sci., 2007, 601, 5326–5331.CrossRefGoogle Scholar
  7. 7.
    A. K. Geim and K. S. Novoselov. Nat. Mater., 2007, 6, 183–191.CrossRefGoogle Scholar
  8. 8.
    K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. Grigorieva, and A. Firsov. Science, 2004, 306, 666–669.CrossRefGoogle Scholar
  9. 9.
    Y. Huang, J. Liang, and Y. Chen. Small, 2012, 8, 1805–1834.CrossRefGoogle Scholar
  10. 10.
    M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff. Nano Lett., 2008, 8, 3498–3502.CrossRefGoogle Scholar
  11. 11.
    H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie. Nano Lett., 2010, 10, 793–798.CrossRefGoogle Scholar
  12. 12.
    G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis. Nano Lett., 2008, 8, 3166–3170.CrossRefGoogle Scholar
  13. 13.
    G. Eda, G. Fanchini, and M. Chhowalla. Nat. Nanotechnol., 2008, 3, 270–274.CrossRefGoogle Scholar
  14. 14.
    W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang. Crit. Rev. Solid State, 2010, 35, 52–71.CrossRefGoogle Scholar
  15. 15.
    C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl. Science, 2009, 323, 1705–1708.CrossRefGoogle Scholar
  16. 16.
    A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim. Rev. Mod. Phys., 2009, 81, 109.CrossRefGoogle Scholar
  17. 17.
    B. Guo, L. Fang, B. Zhang, and J. R. Gong. Insciences J., 2011, 80–89.Google Scholar
  18. 18.
    Y.–H. Lu, M. Zhou, C. Zhang, and Y.–P. Feng. J. Phys. Chem. C, 2009, 113, 20156–20160.CrossRefGoogle Scholar
  19. 19.
    F. Li, J. Zhao, and Z. Chen. J. Phys. Chem. C, 2012, 116, 2507–2514.CrossRefGoogle Scholar
  20. 20.
    L. Wang, Q. Luo, W. Zhang, and J. Yang. Int. J. Hydrogen Energy, 2014, 39, 20190–20196.CrossRefGoogle Scholar
  21. 21.
    G. H. Lee. Ceram. Int., 2013, 39, 7989–7993.CrossRefGoogle Scholar
  22. 22.
    S. M. Vesecky, J. Paul, and D. W. Goodman. J. Phys. Chem., 1996, 100, 15242–15246.CrossRefGoogle Scholar
  23. 23.
    M. A. Farrokhzad and T. I. Khan. Mater. Sci. Eng., 2014, 60, 012011–012014.Google Scholar
  24. 24.
    W. H. Moon, M. S. Son, and H. J. Hwang. Appl. Sur. Sci., 2007, 253, 7078–7081.CrossRefGoogle Scholar
  25. 25.
    P. W. Fowler, T. Heine, D. Mitchell, R. Schmid, and G. Seifert. J. Chem. SOC., Faraday Trans., 1996, 12, 2197–2201.CrossRefGoogle Scholar
  26. 26.
    H. Si, G. Lian, A. Wang, D. Cui, M. Zhao, Q. Wang, and C. Wong. Nano Lett., 2015, 15, 8122–8128.CrossRefGoogle Scholar
  27. 27.
    T. Oku and M. Kuno. Diamond Relat. Mater., 2003, 12, 840–845.CrossRefGoogle Scholar
  28. 28.
    T. Oku, I. Narita, A. Nishiwaki. Mater Manuf Process, 2004, 19, 1215–1239.CrossRefGoogle Scholar
  29. 29.
    L. Han and P. Krstic. Nanotechnology, 2017, 28, 701–706.CrossRefGoogle Scholar
  30. 30.
    T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and A. Lichtenstein. Nano Lett., 2008, 8, 173–177.CrossRefGoogle Scholar
  31. 31.
    M. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120, 215–241.CrossRefGoogle Scholar
  32. 32.
    M. D. Esrafili and R. Nurazar. Comput. Mater. Sci., 2014, 92, 172–177.CrossRefGoogle Scholar
  33. 33.
    Y. Li, Z. Zhou, G. Yu, W. Chen, and Z. Chen. J. Phys. Chem. C, 2010, 114, 6250–6254.CrossRefGoogle Scholar
  34. 34.
    C. Huang, X. Ye, C. Chen, S. Lin, and D. Xie. Comput. Theor. Chem., 2013, 1011, 5–10.CrossRefGoogle Scholar
  35. 35.
    S. Wannakao, T. Nongnual, P. Khongpracha, T. Maihom, and J. Limtrakul. J. Phys. Chem. C, 2012, 116, 16992–16998.CrossRefGoogle Scholar
  36. 36.
    P. Zhao, Y. Su, Y. Zhang, S.–J. Li, and G. Chen. Chem. Phys. Lett., 2011, 515, 159–162.CrossRefGoogle Scholar
  37. 37.
    E. H. Song, J. M. Yan, J. S. Lian, and Q. Jiang. J. Phys. Chem. C, 2012, 116, 20342–20348.CrossRefGoogle Scholar
  38. 38.
    M. D. Esrafili, P. Nematollahi, and H. Abdollahpour. Appl. Surf. Sci., 2016, 378, 418–425.CrossRefGoogle Scholar
  39. 39.
    M. D. Esrafili and N. Saeidi. Phys. E, 2015, 74, 382–387.CrossRefGoogle Scholar
  40. 40.
    M. D. Esrafili, P. Nematollahi, and R. Nurazar. Superlattices Microstruct., 2016, 92, 60–67.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Pourabadeh
    • 1
  • B. Nasrollahzadeh
    • 2
  • R. Razavi
    • 3
  • A. Bozorgian
    • 4
  • M. Najafi
    • 5
  1. 1.Department of Textile Engineering, Islamic Azad UniversityYazd BranchYazdIran
  2. 2.Chemical Engineering Department, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of JiroftJiroftIran
  4. 4.Department of Chemical engineering, Mahshahr BranchIslamic Azad UniversityMahshahrIran
  5. 5.Young Researchers and Elite Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations