Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1478–1483 | Cite as

Catalytic Properties of Gadolinium Oxide in the Removal of Doxycycline with Anticancer Activity

  • A. BagheriEmail author
  • M. Masoudinia
Article
  • 8 Downloads

Abstract

We located multiple binding sites for doxycycline on DNA under physiological conditions, using spectroscopic methods and molecular modeling. Fourier-transformed infrared spectroscopy and UV-visible spectroscopy are used to determine the ligand intercalation and external binding modes, the binding constant, and the stability of doxycycline–DNA complexes in an aqueous solution. Spectroscopic evidence shows that the doxycycline (DOXY) complexation with DNA occurs via G–C and A–T, and a PO2 group with a binding constant K(DOXY–DNA) = 1.4×104 M–1. Uniform rare-earth gadolinium oxide (Gd2O3), as formed through a precipitation process using hexamine as template, are characterized using X-ray diffraction and scanning electron microscopy. Another aim of the study was to investigate the degradation of the DOXY antibiotic by nanosized Gd2O3 under ultraviolet irradiation. Various experimental parameters such as initial DOXY concentrations, initial Gd2O3 concentration, initial pH, reaction times are investigated. According to the results, this method can be good in the removal of DOXY.

Keywords

gadolinium oxide doxycycline hexamine DNA removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Onoda, T. Ono, D. K. Dhar, et al. J. Int. Du Cancer, 2006, 118, 1309–1315.CrossRefGoogle Scholar
  2. 2.
    K. Son, S. Fujioka, T. Iida, et al. Anticancer Res., 2009, 29, 3995–4003.Google Scholar
  3. 3.
    Y. Charles Cao. J. Am. Chem. Soc., 2004, 126, 7456/7457.CrossRefGoogle Scholar
  4. 4.
    K. Takahashi, S. Tazaki, J. Miyahara, Y. Karasawa, and N. Nimura. Nucl. Instrum. Methods Phys. Res., 1996, A377, 119.Google Scholar
  5. 5.
    G. Gunduz and I. Uslu. J. Nucl. Mater., 1996, 231, 113–118.CrossRefGoogle Scholar
  6. 6.
    A. C. Faure, S. Dufort, V. Josserand, P. Perriat, J. L. Coll, and S. O. Roux. Small, 2009, 5, 2565–2575.CrossRefGoogle Scholar
  7. 7.
    L. E. Van Vlerken and M. M. Amiji. Drug Delivery, 2006, 3, 205–216.Google Scholar
  8. 8.
    J. Ma, L. T. B. La, I. Zaman, Q. Meng, L. Luong, D. Ogilvie, and H. C. Kuan. Macromol. Mater. Eng., 2011, 296, 465–474.CrossRefGoogle Scholar
  9. 9.
    P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer. Chem. Rev., 1999, 99, 2293–2352.CrossRefGoogle Scholar
  10. 10.
    M. Shokouhimehr, E. S. Soehnlen, J. Hao, M. Griswold, C. Flask, X. Fan, J. P. Basilion, S. Basu, and S. D. Huang. J. Mater. Chem., 2010, 20, 5251–5259.CrossRefGoogle Scholar
  11. 11.
    R. Lv, S. Gai, Y. Dai, N. Niu, F. He, and P. Yang. ACS. Appl. Mater. Interfaces, 2013, 5, 10806–10818.CrossRefGoogle Scholar
  12. 12.
    Q. Ju, D. Tu, Y. Liu, R. Li, H. Zhu, J. Chen, Z. Chen, M. Huang, and X. Chen. J. Am. Chem. Soc., 2011, 134, 1323–1330.CrossRefGoogle Scholar
  13. 13.
    H. K. Cho, H.–J. Cho, S. Lone, D.–D. Kim, J. H. Yeum, and I. W. Cheong. J. Mater. Chem., 2011, 21, 15486–15493.CrossRefGoogle Scholar
  14. 14.
    L. B. T. La, Y. K. Leong, C. Leatherday, P. I. Au, K. J. Hayward, and L. C. Zhang. Colloids Surf., 2016, A501, 75–82.Google Scholar
  15. 15.
    M. A. Malik, M. Y. Wani, and M. A. Hashim. Arabian J. Chem., 2012, 5, 397–417.CrossRefGoogle Scholar
  16. 16.
    D. Hari Prasad, H. R. Kim, J. S. Park, J. W. Son, B. K. Kim, H. W. Lee, and J. H. Lee. J. Alloys Compd., 2010, 495, 238–241.CrossRefGoogle Scholar
  17. 17.
    I. Muneer, M. A. Farrukh, S. Javaid, and M. Shahid. Superlattices Microstruct., 2015, 77, 256–266.CrossRefGoogle Scholar
  18. 18.
    N. Zhang, R. Yi, L. Zhou, G. Gao, R. Shi, G. Qiu, and X. Liu. Mater. Chem. Phys., 2009, 114, 160–167.CrossRefGoogle Scholar
  19. 19.
    T. Tsuzuki, E. Pirault, and P. McCormick. Nanostruct. Mater., 1999, 11, 125–131.CrossRefGoogle Scholar
  20. 20.
    T. Tsuzuki, W. T. Harrison, and P. G. McCormick. J. Alloys Compd., 1998, 281, 146–151.CrossRefGoogle Scholar
  21. 21.
    R. Bazzi, M. Flores–Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W.Zhang, O. Tillement, E. Bernstein, and P. Perriat. J. Lumin, 2003, 102, 445–450.CrossRefGoogle Scholar
  22. 22.
    J. L. Bridot, A. C. Faure, S. Laurent, C. Riviere, C. Billotey, B. Hiba, M. Janier, V. Josserand, J. L. Coll, and L. Vander. J. Am. Chem. Soc., 2007, 129, 5076–5084.CrossRefGoogle Scholar
  23. 23.
    L. Faucher, M. L. Tremblay, J. Lagueux, Y. Gossuin, and M. A. Fortin. ACS. Appl. Mater. Interfaces, 2012, 4, 4506–4515.CrossRefGoogle Scholar
  24. 24.
    F. Chen, M. Chen, C. Yang, J. Liu, N. Luo, G. Yang, D. Chen, and L. Li. Phys. Chem. Chem. Phys., 2015, 17, 1189–1196.CrossRefGoogle Scholar
  25. 25.
    A. Mignot, C. Truillet, F. Lux, L. Sancey, C. Louis, F. Denat, F. Boschetti, L. Bocher, A. Gloter, and O. Stéphan. Chem. Eur. J., 2013, 19, 6122–6136.CrossRefGoogle Scholar
  26. 26.
    A. Betke and G. Kickelbick, Bottom–up. Inorganics, 2014, 2, 1–15.CrossRefGoogle Scholar
  27. 27.
    M. Khorasani–Motlagh, M. Noroozifar, and S. Mirkazehi–Rigi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75, 598–603.CrossRefGoogle Scholar
  28. 28.
    N. Shahabadi and S. Hadidi. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2012, 96, 278–283.CrossRefGoogle Scholar
  29. 29.
    C. Wei, J. Wang, and M. Zhang. Biophys. Chem., 2010, 148, 51–55.CrossRefGoogle Scholar
  30. 30.
    K. Bhadra and G. S. Kumar. Biochim. Biophys. Acta, 2011, 1810, 485–496.CrossRefGoogle Scholar
  31. 31.
    J. Perrin. Brownian Movement and Molecular Reality. London: Taylor & Francis, 1910.Google Scholar
  32. 32.
    W. Yu and H. Xie. J. Nanomater., 2012, 20, 435873–435880.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Center Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations