Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1374–1380 | Cite as

Simulation of Pyramidal Inversion of Nitrogen in Tetrahydro-1,3-Oxazines in Polar Medium

  • V. V. KuznetsovEmail author


A hybrid DFT PBE/3ζ method is used to simulate pyramidal inversion of the nitrogen atom in unsubstituted- and N-methyltetrahydro-1,3-oxazines in vacuum and in the presence of water and difluorodichloromethane. Relative energies of the equatorial and axial conformers are studied as functions of the number of solvent molecules. It is shown that calculated and experimental NMR values of the barrier of pyramidal nitrogen inversion coincide for the cluster 3-methyltetrahydro-1,3-oxazine-4 difluorodichloromethane molecules. It is concluded that the optimal number of molecules in the solvation shell does not exceed 10 for both solvents.


conformational analysis tetrahydro-1,3-oxazine computer simulation conformer pyramidal nitrogen inversion solvation shell solvent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. N. Latypova, V. V. Zorin, S. S. Zlotskii, D. L. Rakhmankulov, R. A. Karakhanov, M. Bartók, and A. Molnár. Acta Phys. Chem., 1981, 27, 87.Google Scholar
  2. 2.
    F. Fülöp, G. Bernáth, and K. Pihlaja. Adv. Heterocycl. Chem., 1997, 69, 349.CrossRefGoogle Scholar
  3. 3.
    E. Kleinpeter. Adv. Heterocycl. Chem., 2004, 86, 41.CrossRefGoogle Scholar
  4. 4.
    M. I. N. C. Harris and A. C. H. Brag. J. Braz. Chem. Soc., 2004, 15, 971.CrossRefGoogle Scholar
  5. 5.
    С. Hajji, M. L. Testa, R. Salud–Bea, E. Zaballos–Garciâ, J. Server–Carrió, and J. Sepúlveda–Arques. Tetrahedron, 2000, 56, 8173.CrossRefGoogle Scholar
  6. 6.
    С. Hajji, M. L. Testa, E. Zaballos–Garciâ, and J. Sepúlveda–Arques. J. Chem. Res., 2005, 420.Google Scholar
  7. 7.
    V. A. Osyanin, V. Y. Nakushnov, and Y. N. Klimochkin. Chem. Heterocycl. Compd. 2011, 913.Google Scholar
  8. 8.
    R. F. Martinez, M. Avalos, R. Rabiano, P. Cintas, J. L. Jiménez, M. E. Light, J. C. Palacios, and M. S. Pérez. Tetrahedron, 2008, 64, 6377.CrossRefGoogle Scholar
  9. 9.
    D. V. Katorov, G. F. Rudakov, and V. F. Zhilin. Russ. Chem. Bull., 2009, 2240.Google Scholar
  10. 10.
    M. Tomasulo, S. Sortino, and F. M. Raymo. J. Org. Chem., 2008, 73, 118.CrossRefGoogle Scholar
  11. 11.
    K. D. Demir, B. Kiskan, and Y. Yagci. Macromolecules, 2011, 44, 1801.CrossRefGoogle Scholar
  12. 12.
    H. F. Liu, X. Q. Wu, Y. B. Duan, R. B. Dou, H. F. Sun, and M. Ji. Chem. Nat. Compd., 2008, 44, 829.CrossRefGoogle Scholar
  13. 13.
    M. Hurtado, J. G. Contreras, A. Matamala, O. Mó, and M. Yáñez. New J. Chem., 2008, 32, 2209.CrossRefGoogle Scholar
  14. 14.
    V. V. Kuznetsov. Russ. J. Org. Chem., 2010, 46, 117.CrossRefGoogle Scholar
  15. 15.
    A. A. Akhmetgareev, S. A. Bochkor, and V. V. Kuznetsov. Russ. J. Gen. Chem., 2014, 84, 1645.CrossRefGoogle Scholar
  16. 16.
    V. V. Kuznetsov. Chem. Heterocycl. Compd., 2011, 628.Google Scholar
  17. 17.
    S. Maheshwary, N. Patel, N. Sathyamurthy, A. D. Kulkarni, and S. R. Gadre. J. Phys. Chem. A, 2001, 105, 10525.CrossRefGoogle Scholar
  18. 18.
    S. R. Gadre, S. D. Yeole, and N. Sahu. Chem. Rev., 2014, 114, 12132.CrossRefGoogle Scholar
  19. 19.
    G. G. Malenkov. J. Struct. Chem., 2006, 47(S1), S1.Google Scholar
  20. 20.
    S. Steinbach, P. Anderson, M. Melzer, J. K. Kazimirski, U. Buck, and V. Buch. Phys. Chem. Chem. Phys., 2004, 6, 3320.CrossRefGoogle Scholar
  21. 21.
    M. Starzak and M. Mathlouthi. Food Chem., 2003, 82, 3.CrossRefGoogle Scholar
  22. 22.
    HyperChem 8.0. Scholar
  23. 23.
    N. Sahu, S. S. Kribe, and S. R. Gadre. Mol. Physics, 2015, 113, 2970.CrossRefGoogle Scholar
  24. 24.
    J. C. Howard, J. D. Enyard, and G. S. Tschumper. J. Chem. Phys., 2015, 143, 214103.CrossRefGoogle Scholar
  25. 25.
    M. J. Gillan, D. Alfè, and A. Michaelides. J. Chem. Phys., 2016, 144, 130901.CrossRefGoogle Scholar
  26. 26.
    G. Singh, A. Nandi, and S. R. Gadre. J. Chem. Phys., 2016, 144, 104102.CrossRefGoogle Scholar
  27. 27.
    M. Alipour. New J. Chem., 2015, 39, 5534.CrossRefGoogle Scholar
  28. 28.
    M. Alipour. J. Phys. Chem. A, 2013, 117, 4506.CrossRefGoogle Scholar
  29. 29.
    A. Mandal, M. Prakash, R. M. Kumar, R. Parthasarathi, and V. Subramanian. J. Phys. Chem. A, 2010, 114, 2250.CrossRefGoogle Scholar
  30. 30.
    I. F. Dautova, S. P. Ivanov, S. L. Khyrsan. J. Struct. Chem., 2009, 50(6), 1104–1113.CrossRefGoogle Scholar
  31. 31.
    D. N. Laikov and Yu. A. Ustynyuk. Russ. Chem. Bull., 2005, 804.Google Scholar
  32. 32.
    H. Booth and R. U. Lemieux. Can. J. Chem., 1971, 49, 777.CrossRefGoogle Scholar
  33. 33.
    R. A. Y. Jones, A. R. Katritzky, A. C. Richards, S. Saba, A. J. Sparrow, and D. L. Trepanier. J. Chem. Soc. Chem. Commun, 1972, 673.Google Scholar
  34. 34.
    M. J. Cook, R. A. Y. Jones, A. R. Katritzky, M. Moreno Manas, A. C. Richards, A. J. Sparrow, and D. L. Trepanier. J. Chem. Soc. Perkin Trans. II, 1973, 325.Google Scholar
  35. 35.
    Sykes P. A guidebook to mechanism in organic chemistry. Longmans, Green a. CO LTD. London. 1971.Google Scholar
  36. 36.
    I. J. Ferguson, A. R. Katritzky, and D.M. Read. J. Chem. Soc. Chem. Comm., 1975, 255.Google Scholar
  37. 37.
    I. J. Ferguson, A. R. Katritzky, and D. M. Read. J. Chem. Soc. Perkin Trans. II, 1977, 818.Google Scholar
  38. 38.
    V. A. Rabinovich and Z. Ya. Khavin. Brief handbook on chemistry [in Russian]. М.: Khimiya, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ufa State Petroleum Technological UniversityUfaRussia
  2. 2.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations