Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1353–1361 | Cite as

Modification of the Optical and Electronic Properties of TiO2 By N Anion-Doping for Augmentation of the Visible Light Assisted Photocatalytic Performance

  • D. ZhangEmail author
  • J. Wang
Article
  • 7 Downloads

Abstract

In this work, a nitrogen-doped anatase TiO2 nanocrystal is prepared by a modified sol-gel preparation method using the nonionic surfactant (polyoxyethylene sorbitan monooleate) as a structural controller and a soft template. The as-prepared samples are characterized by X-ray diffraction, Raman spectroscopy, UVVis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy techniques. Then the photocatalytic activity of these samples is assessed by the photocatalytic oxidation of phenol under visible light irradiation. The phenol concentration is measured using a UV-Vis spectrometer. Experimental results show that N-doping leads to an excellent visible light photocatalytic activity of the TiO2 nanocatalyst. Furthermore, the formation energy and electronic structure of pure and N-doped anatase TiO2 are described by density functional theory (DFT) calculations. It is found that N-doping narrowed the band gap of bare TiO2, which leads to an excellent visible light photocatalytic activity of N–TiO2 nanocatalysts. Therefore, the prepared N–TiO2 photocatalyst is expected to find the use in organic pollutant degradation under solar light illumination.

Keywords

titania photocatalysis nitrogen doping DFT simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. D. Guo, G. K. Zhang, H. H. Gan, and Y. L. Zhang. Dalton Trans., 2012, 41, 12697–12703.CrossRefGoogle Scholar
  2. 2.
    Y. D. Guo, G. K. Zhang, J. Liu, and Y. L. Zhang. RSC Adv., 2013, 3, 2963–2970.CrossRefGoogle Scholar
  3. 3.
    J. Zhang, J. H. Xi, and Z. G. Ji. J. Mater. Chem., 2012, 22, 17700–17708.CrossRefGoogle Scholar
  4. 4.
    J. Jiang, L. Z. Zhang, and H. Li. Nanoscale, 2013, 5, 10573–10581.CrossRefGoogle Scholar
  5. 5.
    Y. L. Zhang, L. J. Deng, G. K. Zhang, and H. H. Gan. Colloids Surf., A, 2011, 384, 137–144.CrossRefGoogle Scholar
  6. 6.
    J. Zhang, S. Z. Hu, and Y. J. Wang. RSC Adv., 2014, 4, 62912–62919.Google Scholar
  7. 7.
    Y. N. Wang, K. J. Deng, and L. Z. Zhang. J. Phys. Chem. C, 2011, 115, 14300–14308.CrossRefGoogle Scholar
  8. 8.
    Y. L. Zhang, Y. D. Guo, G. K. Zhang, and Y. Y. Gao. Appl. Clay. Sci., 2011, 51, 335–340.CrossRefGoogle Scholar
  9. 9.
    H. Xu and L. Z. Zhang. J. Phys. Chem. C, 2010, 114, 11534–11541.CrossRefGoogle Scholar
  10. 10.
    D. Y. Li, Y. G. Zhang, Y. L. Zhang, X. F. Zhou, and S. J. Guo. J. Hazard. Mater., 2013, 258/259, 42–49.Google Scholar
  11. 11.
    H. Xu and L. Z. Zhang. J. Phys. Chem. C, 2010, 114, 11534–11541.CrossRefGoogle Scholar
  12. 12.
    X. Zhang and L. Z. Zhang. J. Phys. Chem. C, 2010, 114, 940–946.Google Scholar
  13. 13.
    J. Jiang, X. Zhang, P. B. Sun, and L. Z. Zhang. J. Phys. Chem. C, 2011, 115, 20555–20564.CrossRefGoogle Scholar
  14. 14.
    W. G. Zhang, Y. M. Liu, and D. Y. Zhou. RSC Adv., 2015, 5, 57155–57163.CrossRefGoogle Scholar
  15. 15.
    Z. Wan, G. K. Zhang, J. T. Wang, and Y. L. Zhang. RSC Adv., 2013, 3, 19617–19623.CrossRefGoogle Scholar
  16. 16.
    Y. L. Zhang, D. Y. Li, Y. G. Zhang, X. F. Zhou, S. J. Guo, and L. B. Yang. J. Mater. Chem. A, 2014, 2, 8273–8280.CrossRefGoogle Scholar
  17. 17.
    G. K. Zhang, Y. Y. Gao, Y. L. Zhang, and Y. D. Guo. Environ. Sci. Technol., 2010, 44, 6384–6389.CrossRefGoogle Scholar
  18. 18.
    Y. L. Zhang, D. J. Wang, and G. K. Zhang. Chem. Eng. J., 2011, 173, 1–10.CrossRefGoogle Scholar
  19. 19.
    Y. L. Zhang, H. H. Gan, and G. K. Zhang. Chem. Eng. J., 2011, 172, 936–943.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of ScienceHuazhong Agricultural UniversityWuhanP. R. China

Personalised recommendations