Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1342–1352 | Cite as

Spectroscopic (Ft-Ir, Nmr, Uv-Vis, Fluorescence) and Dft Studies (Molecular Structure, Ir and Nmr Spectral Assignments, Nbo and Fukui Function) of Schiff Bases Derived from 2-Chloro-3-Quinolinecarboxaldehyde

  • S. A. BeyramabadiEmail author
  • M. Javan-Khoshkholgh
  • N. J. Ostad
  • A. Gharib
  • M. Ramezanzadeh
  • M. Sadeghi
  • A. Bazian
  • A. Morsali


Two Schiff bases are newly prepared by the condensation of 2-chloro-3-quinolinecarboxaldehyde with ethylenediamine and 1,4-butanediamine. The Schiff bases are characterized by the elemental analysis, IR, 1H and 13CNMR, UV-Vis, and fluorescence spectroscopies. Structural parameters together with the theoretical assignment of their vibrational frequencies and NMR chemical shifts are determined using density functional theory (DFT) approaches. There is good consistency between the DFT-calculated results and the experimental data, confirming the validity of the optimized geometries for the investigated Schiff bases. Optimized geometries of two Schiff bases are not planar, however, the substitutions are essentially in the same plane with the pyridine rings. Shapes of the frontier orbitals are determined using the natural bond orbital (NBO) analysis. Due to a high energy gap between the frontier orbitals, both Schiff bases are stable. Based on the Fukui function analysis, two Cl atoms and two azomethine nitrogen atoms are four suitable donor atoms for coordination to metal ions. Effects of the temperature and pH on the UV-Vis absorbance and fluorescence intensity of the Schiff bases are studied in a DMSO solution.


synthesis Schiff base DFT fluorescence IR assignment NMR NBO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Böttcher, T. Takeuchi, K. I. Hardcastle, T. J. Meade, H. B. Gray, D. Cwikel, M. Kapon, and Z. Dori. Inorg. Chem., 1997, 36, 2498.CrossRefGoogle Scholar
  2. 2.
    E. M. Hodnett and P. D. Mooney. J. Med. Chem., 1970, 13, 786.CrossRefGoogle Scholar
  3. 3.
    E. Lamour, S. Routier, J.–L. Bernier, J.–P. Catteau, C. Bailly, and H. Vezin. J. Am. Chem. Soc., 1999, 121, 1862.CrossRefGoogle Scholar
  4. 4.
    S. Sadeghi, A. Gafarzadeh, and H. Naeimi. J. Anal. Chem., 2006, 61, 677.CrossRefGoogle Scholar
  5. 5.
    K. Gupta and A. Sutar. J. Mol. Catal. A: Chem., 2007, 272, 64.CrossRefGoogle Scholar
  6. 6.
    Y.–T. Liu, G.–D. Lian, D.–W. Yin, and B.–J. Su. Spectrochim. Acta, Part A, 2013, 100, 131.CrossRefGoogle Scholar
  7. 7.
    T. Yousef, G. A. El–Reash, O. El–Gammal, and R. Bedier. J. Mol. Struct., 2013, 1035, 307.CrossRefGoogle Scholar
  8. 8.
    K. Singh, Y. Kumar, P. Puri, M. Kumar, and C. Sharma. Eur. J. Med. Chem., 2012, 52, 313.CrossRefGoogle Scholar
  9. 9.
    Z.–Y. Ma, X. Qiao, C.–Z. Xie, J. Shao, J.–Y. Xu, Z.–Y. Qiang, and J.–S. Lou. J. Inorg. Biochem., 2012, 117, 1.CrossRefGoogle Scholar
  10. 10.
    C.–Y. Wang, X. Wu, S.–J. Tu, and B. Jiang. Synth. React. Inorg., Met., Org., Nano, Met. Chem., 2009, 39, 78.CrossRefGoogle Scholar
  11. 11.
    V. Mishra, S. Pandeya, and S. Ananthan. Acta Pharm. Turc., 2000, 42, 139.Google Scholar
  12. 12.
    V. M. Leovac, M. D. Joksović, V. Divjaković, L. S. Jovanović, Ž. Šaranović, and A. Pevec. J. Inorg. Biochem., 2007, 101, 1094.CrossRefGoogle Scholar
  13. 13.
    S. C. Kumar, A. Pal, M. Mitra, V. M. Manikandamathavan, C.–H. Lin, B. U. Nair, and R. Ghosh. J. Chem. Sci. (Bangalore, India), 2015, 127, 1375.CrossRefGoogle Scholar
  14. 14.
    X. Zhu, C. Wang, Y. Dang, H. Zhou, Z. Wu, Z. Liu, D. Ye, and Q. Zhou. Synth. React. Inorg. Met., Org. Chem., 2000, 30, 625.CrossRefGoogle Scholar
  15. 15.
    J. Wen, J. Zhao, X. Wang, J. Dong, and T. You. J. Mol. Catal. A: Chem., 2006, 245, 242.CrossRefGoogle Scholar
  16. 16.
    H. Zhang, Y. Zhang, and C. Li. J. Catal., 2006, 238, 369.CrossRefGoogle Scholar
  17. 17.
    S. Beyramabadi, H. Eshtiagh–Hosseini, M. Housaindokht, S. Shirzadi, A. Morsali, and M. Naseri. J. Struct. Chem., 2013, 54, 1055.CrossRefGoogle Scholar
  18. 18.
    S. Beyramabadi, A. Morsali, and A. Shams. J. Struct. Chem., 2015, 56, 243.CrossRefGoogle Scholar
  19. 19.
    S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, and A. Esmaeili. J. Struct. Chem., 2012, 53, 460.CrossRefGoogle Scholar
  20. 20.
    S. A. Beyramabadi, H. Eshtiagh–Hosseini, M. R. Housaindokht, and A. Morsali. Organometallics, 2008, 27, 72.CrossRefGoogle Scholar
  21. 21.
    S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, and A. A. Esmaeili. Spectrochim. Acta, Part A, 2011, 83, 467.CrossRefGoogle Scholar
  22. 22.
    H. Eshtiagh–Hosseini, S. Beyramabadi, M. Mirzaei, A. Morsali, A. Salimi, and M. Naseri. J. Struct. Chem., 2013, 54, 1063.CrossRefGoogle Scholar
  23. 23.
    H. Eshtiagh–Hosseini, S. A. Beyramabadi, A. Morsali, M. Mirzaei, H. Chegini, M. Elahi, and M. A. Naseri. J. Mol. Struct., 2014, 1072, 187.CrossRefGoogle Scholar
  24. 24.
    H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. Beheshti, A. A. Esmaeili, M. J. Khoshkholgh, and A. Morsali. Spectrochim. Acta, Part A, 2008, 71, 1341.CrossRefGoogle Scholar
  25. 25.
    H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, and M. J. Khoshkholgh. Spectrochim. Acta, Part A, 2011, 78, 1046.CrossRefGoogle Scholar
  26. 26.
    T. Toozandejani, S. A. Beyramabadi, H. Chegini, M. Khashi, A. Morsali, and M. Pordel. J. Mol. Struct., 2017, 1127, 15.CrossRefGoogle Scholar
  27. 27.
    A. Mansoorinasab, A. Morsali, M. Heravi, and S. Beyramabadi. J. Comput. Theor. Nanosci., 2015, 12, 4935.CrossRefGoogle Scholar
  28. 28.
    T. Sperger, I. A. Sanhueza, I. Kalvet, and F. Schoenebeck. Chem. Rev., 2015, 115, 9532.CrossRefGoogle Scholar
  29. 29.
    E. N. Voloshina, D. Mollenhauer, L. Chiappisi, and B. Paulus. Chem. Phys. Lett., 2011, 510, 220.CrossRefGoogle Scholar
  30. 30.
    H. Wang. Res. Chem. Intermed., 2012, 38, 2175.CrossRefGoogle Scholar
  31. 31.
    S. Altürk, D. Avcı, Ö. Tamer, Y. Atalay, and O. Şahin. J. Phys. Chem. Solids, 2016, 98, 71.CrossRefGoogle Scholar
  32. 32.
    D. Avcı, Y. Atalay, M. Şekerci, and M. Dinçer. Spectrochim. Acta, Part A, 2009, 73, 212.CrossRefGoogle Scholar
  33. 33.
    S. Lavoie, C. Gauthier, V. Mshvildadze, J. Legault, B. Roger, and A. Pichette. J. Nat. Prod., 2015, 78, 2896.CrossRefGoogle Scholar
  34. 34.
    T. Ramya, S. Gunasekaran, and G. R. Ramkumaar. Spectrochim. Acta, Part A, 2013, 114, 277.CrossRefGoogle Scholar
  35. 35.
    V. K. Rastogi and M. A. Palafox. Spectrochim. Acta, Part A, 2011, 79, 970.CrossRefGoogle Scholar
  36. 36.
    Z. Sadeghzade, S. A. Beyramabadi, and A. Morsali. Spectrochim. Acta, Part A, 2015, 138, 637.CrossRefGoogle Scholar
  37. 37.
    B. Shafaatian, S. S. Mousavi, and S. Afshari. J. Mol. Struct., 2016, 1123, 191.CrossRefGoogle Scholar
  38. 38.
    P. Tyagi, S. Chandra, and B. S. Saraswat. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc., 2015, 134, 200.CrossRefGoogle Scholar
  39. 39.
    P. Tyagi, S. Chandra, B. S. Saraswat, and D. Yadav. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc., 2015, 145, 155.CrossRefGoogle Scholar
  40. 40.
    P. Tyagi, M. Tyagi, S. Agrawal, S. Chandra, H. Ojha, and M. Pathak. Spectrochim. Acta, Part A, 2017, 171, 246.CrossRefGoogle Scholar
  41. 41.
    M. Frisch, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Inc., Pittsburgh, PA, 2003.Google Scholar
  42. 42.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  43. 43.
    R. Cammi and J. Tomasi. J. Comput. Chem., 1995, 16, 1449.CrossRefGoogle Scholar
  44. 44.
    D. C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: Wiley Online Library, 2001.CrossRefGoogle Scholar
  45. 45.
    R. Ditchfield. Mol. Phys., 1974, 27, 789.CrossRefGoogle Scholar
  46. 46.
    G. Zhurko and D. Zhurko. URL:, 2009.Google Scholar
  47. 47.
    T. Mukherjee, J. O. Costa Pessoa, A. Kumar, and A. R. Sarkar. {iInorg. Chem.}, 2011, 50, 4349.CrossRefGoogle Scholar
  48. 48.
    W. Yang and W. J. Mortier. {iJ. Am. Chem. Soc.}, 1986, 108, 5708.CrossRefGoogle Scholar
  49. 49.
    A. A. Khandar, B. Shaabani, F. Belaj, and A. Bakhtiari. {iPolyhedron}, 2006, 25, 1893.CrossRefGoogle Scholar
  50. 50.
    S. Naskar, S. Naskar, H. M. Figgie, W. S. Sheldrick, and S. K. Chattopadhyay. {iPolyhedron}, 2010, 29, 493.CrossRefGoogle Scholar
  51. 51.
    O. M. I. Adly. pectrochim. Acta, Part A, 2012, 95, 483.CrossRefGoogle Scholar
  52. 52.
    D. Ware, D. Mackie, P. Brothers, and W. Denny. {iPolyhedron}, 1995, 14, 1641.CrossRefGoogle Scholar
  53. 53.
    H. Ünver, E. Kendi, K. Güven, and T. N. Durlu. {iZeitschrift für Naturforschung B}, 2002, 57, 685.CrossRefGoogle Scholar
  54. 54.
    N. Giricheva, G. Girichev, N. Kuzmina, Y. S. Medvedeva, and A. Y. Rogachev. {iJ. Struct. Chem.}, 2009, 50, 52.CrossRefGoogle Scholar
  55. 55.
    N. Tverdova, N. Giricheva, G. Girichev, N. Kuz′mina, O. Kotova, and A. Zakharov. {iRuss. J. Phys. Chem. A}, 2009, 83, 2255.CrossRefGoogle Scholar
  56. 56.
    N. V. Tverdova, E. D. Pelevina, N. I. Giricheva, G. V. Girichev, N. P. Kuzmina, and O. V. Kotova. truct. Chem., 2011, 22, 441.CrossRefGoogle Scholar
  57. 57.
    N. J. Sanmartí, A. M. García–Deibe, M. Fondo, D. Navarro, and M. R. Bermejo. {iPolyhedron}, 2004, 23, 963.CrossRefGoogle Scholar
  58. 58.
    R. Mathammal, K. Sangeetha, M. Sangeetha, R. Mekala, and S. Gadheeja. {iJ. Mol. Struct.}, 2016, 1120, 1.CrossRefGoogle Scholar
  59. 59.
    N. Tezer and N. Karakus. {iJ. Mol. Model.}, 2009, 15, 223.CrossRefGoogle Scholar
  60. 60.
    N. Özdemir, M. Dinçer, A. Çukurovalı, and O. Büyükgüngör. {iJ. Mol. Model.}, 2009, 15, 1435.CrossRefGoogle Scholar
  61. 61.
    E. M. Kosower. {iJ. Am. Chem. Soc.}, 1958, 80, 3253.CrossRefGoogle Scholar
  62. 62.
    A. White. {iBiochem. J.}, 1959, 71, 217.CrossRefGoogle Scholar
  63. 63.
    J. R. Lakowicz. Principles of fluorescence spectroscopy. Berlin: Springer Science & Business Media, 2013.Google Scholar
  64. 64.
    D. A. Skoog and D. M. West. Principles of instrumental analysis. Saunders College Philadelphia, Chicago, 1980.Google Scholar
  65. 65.
    B. Valeur and M. N. Berberan–Santos. Molecular fluorescence: principles and applications. New York: John Wiley &Sons, 2012.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Beyramabadi
    • 1
    Email author
  • M. Javan-Khoshkholgh
    • 2
  • N. J. Ostad
    • 2
  • A. Gharib
    • 3
  • M. Ramezanzadeh
    • 1
  • M. Sadeghi
    • 1
  • A. Bazian
    • 3
  • A. Morsali
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Department of ChemistryPayam Noor UniversityTehranIran
  3. 3.Young Researchers and Elite Club, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations