Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1335–1341 | Cite as

Effect of Different π-Conjugated Dyes Containing 4,5-Diazafluorenone-9- Hydrazone on The Performance of Dye-Sensitized Solar Cells

  • I. Erden
  • Z. Orman
  • F. A. Kilicarslan
Article
  • 11 Downloads

Abstract

In this study, two ligands and their ruthenium complexes are synthesized and their photovoltaic properties for dye-sensitized solar cells (DSSCs) of new substances substituted by 4,5-diazafluorenone-9-hydrazone groups is investigated. The structures of the compounds are determined by FTIR, UV-Vis, HNMR, CNMR, and MS spectroscopic techniques. The photovoltaic and electrochemical properties of these compounds are investigated and the applicability in DSSCs as photo sensitizers is studied. Photovoltaic cell efficiencies (PCEs) of the devices are in the range 0.08-1.54% under simulated AM 1.5 solar irradiation of 100 mW/cm2, and the highest open-circuit voltage (Voc) reaches 0.43 V. When the photovoltaic performance of the DSSC devices is compared, it indicates that PCEs assume the following: P1–Ru > > P2–Ru > P1 > P2. The PCE value of 1.54% is obtained with DSSC based on P1–Ru under AM irradiation (100 mW/cm2). DSSC based on the P1–Ru produced efficiency of 1.54% whereas DSSC-based P1 exhibits the device performance with an efficiency of 0.08% under illumination. These results suggest that a larger π-conjugated bridge and a richer electron donor of P1–Ru are beneficial for the photovoltaic performance of DSSC.

Keywords

DSSC 4,5-diazafluorenone-9-hydrazone Schiff base ruthenium complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. O′Regan and M. Gratzel. Nature, 1991, 353, 737–740.CrossRefGoogle Scholar
  2. 2.
    M. Gratzel. Reviews, 2003, 4145–4153.Google Scholar
  3. 3.
    P. Singh, A. Baheti, K. R. Justin Thomas, C. P. Lee, and K. C. Ho. Dyes Pigm., 2012, 95, 523–33.CrossRefGoogle Scholar
  4. 4.
    R. K. Kanaparthi, J. Kandhadi, and L. Giribabu. Tetrahedron, 2012, 68, 8383–8393.CrossRefGoogle Scholar
  5. 5.
    V. Annibale and D. Song. Dalton Transactions, 2016, 45, 32–49.CrossRefGoogle Scholar
  6. 6.
    G. Wu, F. Kong, J. Li, W. Chen, X. Fang, C. Zhang, Q. Chen, X. Zhang, and S. Dai. Dyes Pigm., 2013, 99, 653–660.CrossRefGoogle Scholar
  7. 7.
    H. Tributsch. Chem. Rev., 2004, 248, 1511–1530.Google Scholar
  8. 8.
    L. Wang, M. Liang, Y. Zhang, F. Cheng, X. Wang, Z. Sun, and S. Xue. Dyes Pigm., 2014, 101, 270–279.CrossRefGoogle Scholar
  9. 9.
    S. Kim, D. Kim, H. Choi, M.S. Kang, K. Song, S. O. Kang, and J. Ko. Chem. Commun., 2008, 4951–4953.Google Scholar
  10. 10.
    Y. Zang, Y. Xiao, Y. Xie, L. Zhu, D. Shi, and C. Cheng. Org. Electron., 2015, 21, 184–191.CrossRefGoogle Scholar
  11. 11.
    T. Vincent. Dalton Transactions, 2016, 45, 32–49.CrossRefGoogle Scholar
  12. 12.
    Z. Ji, K. Yu–He, L. Hai–Bin, G. Yun, W. Yong, and S. Zhong–Min. Dyes Pigm., 2012, 95, 313–321.CrossRefGoogle Scholar
  13. 13.
    Y. Wu and W. Zhu. Chem. Soc. Rev., 2013, 42, 2039–2058.CrossRefGoogle Scholar
  14. 14.
    W. Ling, S. Ping, C. Zhencai, L. Xinping, H. Yuanshuai, L. Chunyan, C. Pan, Z. Bin, and T. T. Songting. J. Power Sources, 2014, 246, 831–839.CrossRefGoogle Scholar
  15. 15.
    K. S. Gupta, S. P. Singh, A. Islam, L. Han, and M. Chandrasekharam. Electrochim. Acta, 2015, 174, 581–587.CrossRefGoogle Scholar
  16. 16.
    C. Caner, A. K. Fatma, G. Osman, F. Yıldıray, O. Mustafa, and I. Erden. Dyes Pigm., 2016, 134, 77/78.CrossRefGoogle Scholar
  17. 17.
    L. Lai–Fan, Q. Chuanjiang, C. Chung–Hin, I. Ashraful, H. Liyuan, H. Cheuk–Lam, and W. Wai–Yeung. Dyes Pigm., 2013, 98, 428–436.CrossRefGoogle Scholar
  18. 18.
    J. L. Song, P. Amaladass, S. H. Wen, K. K. Pasunooti, A. Li, Y. L. Yu, et al. New J. Chem., 2011, 35, 127–136.CrossRefGoogle Scholar
  19. 19.
    S. Ping, L. Xinping, J. Shenghui, W. Ling, Y. Ling, Y. Dandan, Z. Bin, and T. Songting. Dyes Pigm., 2012, 92, 1042–1051.CrossRefGoogle Scholar
  20. 20.
    G. P. Smestad. Solar Energy Mater. and Solar Cells, 1998, 55, 157–68.CrossRefGoogle Scholar
  21. 21.
    M. S. Deshpande and A. S. ve Kumbhar. J. Chem. Sci., 2005, 117, 153–159.CrossRefGoogle Scholar
  22. 22.
    B. Abhishek, K. R. Justin Thomas, L. Chuan–Pei, and H. Kuo–Chuan. Organic Electronics, 2013, 15(18), 4642–4645.Google Scholar
  23. 23.
    S. Katsuya, Y. Mugishima, T. Iwanaga, T. Shinji, T. Hiroyuki, W. Motonori, S. Teruo, S. Michito, and T. Hitoshi. Tetrahedron Lett., 2011, 52, 5865–5868.CrossRefGoogle Scholar
  24. 24.
    S. Duryodhan, P. Harihara, P. Dhananjaya, Y. Jen–Fu, H. Ying–Chan, L. Jiann–T′Suen, L. Kuang–Lieh, W. Kung–Hwa, and L. Hong–Cheu. Tetrahedron, 2011, 67, 303–311.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryYildiz Technical UniversityİstanbulTurkey

Personalised recommendations