Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1326–1334 | Cite as

Experimental and Computational Investigations of 4-((E)-(2-Amino-5- Nitrophenylimino)Methyl)-5- (Hydroxymethyl)-2-Methylpyridin-3-Ol Schiff Base Derived from Vitamin B6

  • S. A. BeyramabadiEmail author
  • M. Khashi
  • A. Morsali
  • A. Gharib
  • H. Chegini


An unsymmetrical tridentate Schiff base 4-((E)-(2-amino-5-nitrophenylimino)methyl)-5-(hydroxymethyl)- 2-methylpyridin-3-ol is newly synthesized and characterized experimentally. Its geometrical parameters, the assignment of IR bands and NMR chemical shifts are also computed by the density functional theory (DFT) method. In addition, the atoms in molecules (AIM) analysisis employed to investigate its geometry. Only one of the diamine–NH2 groups undergoes the condensation reaction. In the structure of the synthesized Schiff base, the remaining aminogroup lies in the para position with respect to the nitro group (isomer 1). In both gas and solution phases, isomer 1 is more stable than isomer 2 with the meta orientation of the amino and nitro groups. The NMR chemical shifts and the AIM analysis show that isomer 1 is a more favorite structure for the synthesized Schiff base. It has no planar structure. The phenolic proton is engaged in the intramolecular hydrogen bond with the azomethine nitrogen atom. The experimental results are in good agreement with the theoretical ones, confirming the validity of the optimized geometry.


synthesis Schiff base DFT intramolecular proton transfer assignment AIM analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.–L. Peng, X.–L. Liu, X.–H. Wang, and Z.–G. Zhao. Chem. Pap., 2014, 68, 401.CrossRefGoogle Scholar
  2. 2.
    A. N. Aziz, M. Taha, N. H. Ismail, E. H. Anouar, S. Yousuf, W. Jamil, K. Awang, N. Ahmat, K. M. Khan, and S. M. Kashif. Molecules, 2014, 19, 8414.CrossRefGoogle Scholar
  3. 3.
    E. M. Hodnett and P. D. Mooney. J. Med. Chem., 1970, 13, 786.CrossRefGoogle Scholar
  4. 4.
    M. M. El Sadek, N. S. Abd El–Dayem, S. Y. Hassan, M. A. Mostafa, and G. A. Yacout. Molecules, 2014, 19, 5163.CrossRefGoogle Scholar
  5. 5.
    S. M. Sondhi, N. Singh, A. Kumar, O. Lozach, and L. Meijer. Bioorg. Med. Chem., 2006, 14, 3758.CrossRefGoogle Scholar
  6. 6.
    L. Wang, W. Qin, and W. Liu. Inorg. Chem. Commun., 2010, 13, 1122.CrossRefGoogle Scholar
  7. 7.
    G. Nagesh and B. Mruthyunjayaswamy. J. Mol. Struct., 2015, 1085, 198.CrossRefGoogle Scholar
  8. 8.
    G. Karimipour, M. Montazerozohori, and N. Haghighat Naeini. Iran. J. Chem. Chem. Eng., 2011, 30, 13.Google Scholar
  9. 9.
    T. Mukherjee, J. O. Costa Pessoa, A. Kumar, and A. R. Sarkar. Inorg. Chem., 2011, 50, 4349.CrossRefGoogle Scholar
  10. 10.
    V. K.–Y. Lo, Y. Liu, M.–K. Wong, and C.–M. Che. Org. Lett., 2006, 8, 1529.CrossRefGoogle Scholar
  11. 11.
    M. Shamsipur, A. Soleymanpour, M. Akhond, H. Sharghi, and M. A. Naseri. Anal. Chim. Acta, 2001, 450, 37.CrossRefGoogle Scholar
  12. 12.
    V. K. Gupta, A. K. Singh, and B. Gupta. Anal. Chim. Acta, 2006, 575, 198.CrossRefGoogle Scholar
  13. 13.
    S. Beyramabadi, H. Eshtiagh–Hosseini, M. Housaindokht, S. Shirzadi, A. Morsali, and M. Naseri. J. Struct. Chem., 2013, 54, 1055.CrossRefGoogle Scholar
  14. 14.
    S. Beyramabadi, A. Morsali, and A. Shams. J. Struct. Chem., 2015, 56, 243.CrossRefGoogle Scholar
  15. 15.
    S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, and A. Esmaeili. J. Struct. Chem., 2012, 53, 460.CrossRefGoogle Scholar
  16. 16.
    S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, and A. A. Esmaeili. Spectrochim. Acta, Part A, 2011, 83, 467.CrossRefGoogle Scholar
  17. 17.
    H. Eshtiagh–Hosseini, S. A. Beyramabadi, A. Morsali, M. Mirzaei, H. Chegini, M. Elahi, and M. A. Naseri. J. Mol. Struct., 2014, 1072, 187.CrossRefGoogle Scholar
  18. 18.
    T. Toozandejani, S. A. Beyramabadi, H. Chegini, M. Khashi, A. Morsali, and M. Pordel. J. Mol. Struct., 2017, 1127, 15.CrossRefGoogle Scholar
  19. 19.
    J. L. Berg and L. Stryer. Biochemistry. WH Freeman and Company: New York, 2002.Google Scholar
  20. 20.
    V. M. Leovac, M. D. Joksović, V. Divjaković, L. S. Jovanović, Ž. Šaranović, and A. Pevec. J. Inorg. Biochem., 2007, 101, 1094.CrossRefGoogle Scholar
  21. 21.
    H. Brurok, J. H. Ardenkjær–Larsen, G. Hansson, S. Skarra, K. Berg, J. O. Karlsson, I. Laursen, and P. Jynge. Biochem. Biophys. Res. Commun., 1999, 254, 768.CrossRefGoogle Scholar
  22. 22.
    A. Filarowski and I. Majerz. J. Phys. Chem. A, 2008, 112, 3119.CrossRefGoogle Scholar
  23. 23.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Gaussian Inc., Pittsburgh, PA, 2003.Google Scholar
  24. 24.
    R. Cammi and J. Tomasi. J. Comput. Chem., 1995, 16, 1449.CrossRefGoogle Scholar
  25. 25.
    R. Ditchfield. Mol. Phys., 1974, 27, 789.CrossRefGoogle Scholar
  26. 26.
    D. C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: Wiley Online Library, 2001.CrossRefGoogle Scholar
  27. 27.
    R. G. Parr and R. F. Bader. Atoms in Molecules: A Quantum Theory, JSTOR, 1993.Google Scholar
  28. 28.
    F. Biegler–Konig, J. Schonbohm, and D. Bayles. Software news and updates–AIM2000–A program to analyze and visualize atoms in molecules. John Wiley & Sons Inc., 605 Third Ave, New York, NY 10158–0012 USA, 2001, 545–559.Google Scholar
  29. 29.
    K. Srinivasan, P. Michaud, and J. K. Kochi. J. Am. Chem. Soc., 1986, 108, 2309.CrossRefGoogle Scholar
  30. 30.
    C.–B. Ma, F. Chen, C.–N. Chen, and Q.–T. Liu. Acta Crystallogr. C: Cryst. Struct. Commun., 2003, 59, m516.Google Scholar
  31. 31.
    R. J. Butcher and W. Towns. Acta Crystallogr. E: Struct. Rep. Online, 2005, 61, m2618.Google Scholar
  32. 32.
    N. Suleiman Gwaram, H. Khaledi, and H. Mohd Ali. Acta Crystallogr. E: Struct. Rep. Online, 2010, 66, m813.Google Scholar
  33. 33.
    O. S. Popova, V. A. Bren′, V. V. Tkachev, A. N. Utenyshev, Y. V. Revinskii, K. S. Tikhomirova, A. G. Starikov, G. S. Borodkin, A. D. Dubonosov, I. E. Tolpygin, G. V. Shilov, S. M. Aldoshin, and V. I. Minkin. Russ. J. Org. Chem., 2016, 52, 541.CrossRefGoogle Scholar
  34. 34.
    I. V. Il′ina, E. A. Koneva, D. V. Korchagina, G. E. Sal′nikov, A. M. Genaev, K. P. Volcho, and N. F. Salakhutdinov. Russ. J. Org. Chem., 2012, 48, 214.CrossRefGoogle Scholar
  35. 35.
    P. Leyton, C. Paipa, A. Berrios, A. Zárate, M. V. Castillo, and S. A. Brandán. J. Mol. Struct., 2013, 1031, 110.CrossRefGoogle Scholar
  36. 36.
    F. De Proft and P. Geerlings. Chem. Rev. (Washington, DC, U. S.), 2001, 101, 1451.CrossRefGoogle Scholar
  37. 37.
    A. Pui, C. Policar, and J.–P. Mahy. Inorg. Chim. Acta, 2007, 360, 2139.CrossRefGoogle Scholar
  38. 38.
    A. Y. Bespalov, T. L. Gorchakova, A. Y. Ivanov, M. A. Kuznetsov, L. M. Kuznetsova, A. S. Pankova, L. I. Prokopenko, and A. F. Khlebnikov. Russ. J. Org. Chem., 2016, 52, 421.CrossRefGoogle Scholar
  39. 39.
    H. Eshtiagh–Hosseini, S. Beyramabadi, M. Mirzaei, A. Morsali, A. Salimi, and M. Naseri. J. Struct. Chem., 2013, 54, 1063.CrossRefGoogle Scholar
  40. 40.
    H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. Beheshti, A. A. Esmaeili, M. J. Khoshkholgh, and A. Morsali. Spectrochim. Acta, Part A, 2008, 71, 1341.CrossRefGoogle Scholar
  41. 41.
    H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, and M. J. Khoshkholgh. Spectrochim. Acta, Part A, 2011, 78, 1046.CrossRefGoogle Scholar
  42. 42.
    D. Ware, D. Mackie, P. Brothers, and W. Denny. Polyhedron, 1995, 14, 1641.CrossRefGoogle Scholar
  43. 43.
    C. F. Matta, A. A. Arabi, and D. F. Weaver. Europ. J. Med. Chem., 2010, 45, 1868.CrossRefGoogle Scholar
  44. 44.
    E. Espinosa and E. Molins. J. Chem. Phys., 2000, 113, 5686.CrossRefGoogle Scholar
  45. 45.
    R. F. Bader, Y. Tal, S. G. Anderson, and T. T. Nguyen–Dang. Israel J. Chem., 1980, 19, 8.CrossRefGoogle Scholar
  46. 46.
    M. Vener, A. Manaev, A. Egorova, and V. Tsirelson. J. Phys. Chem. A, 2007, 111, 1155.CrossRefGoogle Scholar
  47. 47.
    H. Chegini, S. A. Beyramabadi, A. Morsali, M. Saberi, and M. Lotfi. J. Mol. Struct., 2015, 1083, 1.CrossRefGoogle Scholar
  48. 48.
    V. Maroofi, M. Pordel, H. Chegini, and S. Ramezani. J. Fluoresc., 2015, 25, 1235.CrossRefGoogle Scholar
  49. 49.
    X. Li, Y. Wang, S. Zheng, and L. Meng. Struct. Chem., 2012, 23, 1233.CrossRefGoogle Scholar
  50. 50.
    I. Mata, I. Alkorta, E. Molins, and E. Espinosa. Chem. Europ. J., 2010, 16, 2442.CrossRefGoogle Scholar
  51. 51.
    T. M. Krygowski, J. E. Zachara–Horeglad, M. Palusiak, S. Pelloni, and P. Lazzeretti. J. Organic Chem., 2008, 73, 2138.CrossRefGoogle Scholar
  52. 52.
    X. Fradera, M. A. Austen, and R. F. Bader. J. Phys. Chem. A, 1999, 103, 304.CrossRefGoogle Scholar
  53. 53.
    J. G. Angyan, M. Loos, and I. Mayer. J. Phys. Chem., 1994, 98, 5244.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Beyramabadi
    • 1
    Email author
  • M. Khashi
    • 2
  • A. Morsali
    • 1
  • A. Gharib
    • 2
  • H. Chegini
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Young Researchers and Elite Club, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations