Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1308–1316 | Cite as

Structure of the Mo-Containing Dispersed Catalyst During Heavy Oil Upgrading in the Presence of Steam And Hydrogen

  • G. A. Sosnin
  • O. O. MironenkoEmail author
  • P. M. Eletskii
  • R. G. Kukushkin
  • Yu. K. Gulyaeva
  • O. A. Bulavchenko
  • E. Yu. Gerasimov
  • A. A. Saraev
  • V. V. Kaichev
  • E. V. Khramov
  • V. A. Yakovlev
Article
  • 13 Downloads

Abstract

XRD, TEM, EXAFS/XANES methods are first used to study the structure and morphology of Mocontaining phases of carbon residues of heavy oil refining during catalytic steam cracking, catalytic cracking without water, and hydrocracking. According to the results obtained from physical and chemical studies of Mo-based catalytic phases, the reaction medium affects structural features of Mo-containing phases, e.g. the amount of oxide and sulphide forms, the particle size, and particle morphology.

Keywords

molybdenum catalytic steam cracking heavy oil dispersed catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Khadzhiev. Pet. Chem., 2016, 56(6), 465.CrossRefGoogle Scholar
  2. 2.
    M. J. Angeles, C. Leyva, J. Ancheyta, and S. Ramírez. Catal. Today, 2014, 220–222, 274.CrossRefGoogle Scholar
  3. 3.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva. Pet. Chem., 2014, 5(5), 323.CrossRefGoogle Scholar
  4. 4.
    M. T. Nguyen, N. T. Nguyen, J. Choa, C. Park, S. Park, J. Jung, and C. W. Lee. J. Ind. Eng. Chem., 2016, 43, 1.CrossRefGoogle Scholar
  5. 5.
    E. Manek and J. Haydary. Fuel Process. Technol., 2017, 159, 320.CrossRefGoogle Scholar
  6. 6.
    S.–H. Kim, K.–D. Kim, and Y.–K. Lee. J. Catal., 2017, 347, 127.CrossRefGoogle Scholar
  7. 7.
    G. Bellussi, G. Rispoli, A. Landoni, R. Millini, D. Molinari, E. Montanari, D. Moscotti, and P. Pollesel. J. Catal., 2013, 308, 189.CrossRefGoogle Scholar
  8. 8.
    R. R. Chianelli, G. Berhault, and B. Torres. Catal. Today, 2009, 147, 275.CrossRefGoogle Scholar
  9. 9.
    H. Topsøe, B. S. Clausen, and F. E. Massoth. In: Hydrotreating Catalysis–science and Technology /Eds. J. R. Anderson and M. Boudart. Berlin: Springer Verlag, 1996, 1–269.Google Scholar
  10. 10.
    P. A. Nikul′shin, A. V. Mozhaev, D. I. Ishutenko, P. P. Minaev, A. I. Lyashenko, and A. A. Pimerzin. Kinet. Catal., 2012, 53(5), 620.CrossRefGoogle Scholar
  11. 11.
    D. Genuit, P. Afanasiev, and M. Vrinat. J. Catal., 2005, 235, 302.CrossRefGoogle Scholar
  12. 12.
    P. Afanasiev. In: III Russian Congress on Catalysis “Roskataliz–2017”, Nizhny Novgorod, 2017, 13.Google Scholar
  13. 13.
    D. I. Kochubei, V. A. Rogov, V. P. Babenko, S. V. Bogdanov, and V. I. Zaikovskii. Kinet. Catal., 2003, 44(1), 135.CrossRefGoogle Scholar
  14. 14.
    P. Almao Pereira, G. L. Trujilo, E. Peluso, C. Galarraga, C. Sosa, C. Algara Scott, F. Lopez–Linares, L. A. Crabognani Ortega, and N. G. Zerpa Reques. Pat. WO/2013/000067, 2013.Google Scholar
  15. 15.
    I. V. Kozhevnikov, A. L. Nuzhdin, and O. N. Martyanov. J. Supercrit. Fluids, 2010, 55, 217.CrossRefGoogle Scholar
  16. 16.
    N. Li, B. Yan, and X.–M. Xiao. Energies, 2015, 8, 8962.CrossRefGoogle Scholar
  17. 17.
    X. K. Gai, H. Arano, P. Lu, J. W. Mao, Y. Yoneyama, C. X. Lu, R. Q. Yang, and N. Tsubaki. Fuel Process. Technol., 2016, 142, 315.CrossRefGoogle Scholar
  18. 18.
    R. P. Dutta, W. C. McCaffrey, M. R. Gray, and K. Muehlenbachs. Energy Fuels., 2000, 14, 671.CrossRefGoogle Scholar
  19. 19.
    P. M. Eletskii, O. O. Mironenko, G. A. Sosnin, O. A. Bulavchenko, O. A. Stonkus, and V. A. Yakovlev. Catal. Ind., 2016, 8, 328.CrossRefGoogle Scholar
  20. 20.
    B. P. Tumanyan, N. N. Petrukhina, G. P. Kayukova, D. K. Nurgaliev, L. E. Foss, and G. V. Romanov. Russ. Chem. Rev., 2015, 84(11), 1145.CrossRefGoogle Scholar
  21. 21.
    O. Muraza and A. Galadima. Fuel., 2016, 157, 219.CrossRefGoogle Scholar
  22. 22.
    O. O. Mironenko, G. A. Sosnin, P. M. Eletskii, Y. K. Gulyaeva, O. A. Bulavchenko, O. A. Stonkus, V. O. Rodina, and V. A. Yakovlev. Pet. Chem., 2017, 57, 618.CrossRefGoogle Scholar
  23. 23.
    H. K. Ahn, S. H. Park, S. Sattar, and S. I. Woo. Catal. Today, 2016, 265, 118.CrossRefGoogle Scholar
  24. 24.
    P. Scherrer. Math.–Phys., 1918, 98.Google Scholar
  25. 25.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus. Nucl. Instrum. Methods Phys. Res. A, 2009, 603, 95.CrossRefGoogle Scholar
  26. 26.
    M. Newville. J. Synchrotron Radiat., 2001, 8, 96.CrossRefGoogle Scholar
  27. 27.
    T. S. Nguyen, M. Tayakout–Fayolle, M. Lacroix, D. Gotteland, M. Aouine, R. T. Bacaud, P. Afanasiev, and C. Geantet. Fuel, 2015, 160, 50.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. A. Sosnin
    • 1
    • 2
  • O. O. Mironenko
    • 1
    Email author
  • P. M. Eletskii
    • 1
  • R. G. Kukushkin
    • 1
  • Yu. K. Gulyaeva
    • 1
  • O. A. Bulavchenko
    • 1
    • 2
  • E. Yu. Gerasimov
    • 1
    • 2
  • A. A. Saraev
    • 1
    • 2
  • V. V. Kaichev
    • 1
    • 2
  • E. V. Khramov
    • 3
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations