Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1302–1307 | Cite as

The Structure of 2-Methylphenylcyanamide in the Solid State

  • M. A. Kinzhalov
  • A. S. Novikov
  • O. V. Khoroshilova
  • N. A. Bokach
Article
  • 10 Downloads

Abstract

The structure of 2-methylphenylcyanamide NCNH(C6H4Me-2) is established in the solid state using single crystal X-ray diffraction data. The contribution of various intermolecular contacts to the crystal packing is studied using the Hirshfeld surface analysis and quantum chemical calculations within the density functional (DFT) M06-2X/6-311++G(d,p) level of theory.

Keywords

arylcyanamides non-covalent interactions Hirshfeld surface analysis topological analysis of electron density distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. R. Prabhath, L. Williams, S. V. Bhat, and P. Sharma. Molecules, 2017, 22(4), 615.Google Scholar
  2. 2.
    M.–H. Larraufie, G. Maestri, M. Malacria, C. Ollivier, L. Fensterbank, and E. Lacôte. Synthesis, 2012, 44(09), 1279–1292.Google Scholar
  3. 3.
    D. D. Nekrasov. Russ. J. Org. Chem., 2004, 40(10), 1387–1402.Google Scholar
  4. 4.
    R. J. Crutchley. Coord. Chem. Rev., 2001, 219–221(Suppl. C), 125–155.Google Scholar
  5. 5.
    M. Khorasani–Motlagh, M. Noroozifar, J. Saffari, and H. R. Khavasi. J. Mol. Struct., 2011, 41, 625–629.Google Scholar
  6. 6.
    M. Khorasani–Motlagh, M. Noroozifar, J. Saffari, and B. Patrick. Inorg. Chim. Acta, 2009, 362, 4721–4728.Google Scholar
  7. 7.
    M. Khorasani–Motlagh, M. Noroozifar, J. Saffari, and B. Patrick. Inorg. Chim. Acta, 2012, 383, 72–82.Google Scholar
  8. 8.
    H. Brand, P. Mayer, A. Schulz, T. Soller, and A. Villinger. Chem.–Asian J., 2008, 3(6), 1050–1058.Google Scholar
  9. 9.
    M. Jazestani, H. Chiniforoshan, L. Tabrizi, P. McArdle, and B. Notash. Inorg. Chim. Acta, 2016, 450, 402–410.Google Scholar
  10. 10.
    T. Ramana and T. Punniyamurthy. Eur. J. Org. Chem., 2011, 2011(25), 4757–4759.Google Scholar
  11. 11.
    T. Ramana, P. Saha, M. Das, and T. Punniyamurthy. Org. Lett., 2010, 12(1), 84–87.Google Scholar
  12. 12.
    V. Kumar, M. P. Kaushik, and A. Mazumdar. Eur. J. Org. Chem., 2008, 2008(11), 1910–1916.Google Scholar
  13. 13.
    J. Li and L. Neuville. Org. Lett., 2013, 15(24), 6124–6127.Google Scholar
  14. 14.
    L. Palatinus and G. Chapuis. J. Appl. Crystallogr., 2007, 40, 786–790.Google Scholar
  15. 15.
    L. Palatinus and A. van der Lee. J. Appl. Crystallogr., 2008, 41, 975–984.Google Scholar
  16. 16.
    L. Palatinus, S. J. Prathapa, and S. van Smaalen. J. Appl. Crystallogr., 2012, 45, 575–580.Google Scholar
  17. 17.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339–341.Google Scholar
  18. 18.
    G. M. Sheldrick. Acta Crystallogr., 2015, C71, 3–8.Google Scholar
  19. 19.
    A. T. CrysAlisPro. Version 1.171.36.20 (release 27–06–2012).Google Scholar
  20. 20.
    Y. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120(1), 215–241.Google Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, and D. J. Fox. Gaussian, Inc., Wallingford, CT, 2010, vol. Revision C.01.Google Scholar
  22. 22.
    R. F. W. Bader. Chem. Rev., 1991, 91(5), 893–928.Google Scholar
  23. 23.
    T. Lu and F. W. Chen. J. Comput. Chem., 2012, 33(5), 580–592.Google Scholar
  24. 24.
    S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, and M. A. Spackman, CrystalExplorer, Version 3.1, University of Western Australia, 2012.Google Scholar
  25. 25.
    Z. M. Bikbaeva, A. S. Novikov, V. V. Suslonov, N. A. Bokach, and V. Y. Kukushkin. Dalton Trans., 2017, 46(46), 10090–10101.Google Scholar
  26. 26.
    E. V. Andrusenko, E. V. Kabin, A. S. Novikov, N. A. Bokach, G. L. Starova, and V. Y. Kukushkin. New J. Chem., 2017, 41(1), 316–325.Google Scholar
  27. 27.
    K. Kolari, J. Sahamies, E. Kalenius, A. S. Novikov, V. Y. Kukushkin, and M. Haukka. Solid State Sci., 2016, 60, 92–98.Google Scholar
  28. 28.
    D. M. Ivanov, Y. V. Kirina, A. S. Novikov, G. L. Starova, and V. Y. Kukushkin. J. Mol. Struct., 2016, 1104, 19–23.Google Scholar
  29. 29.
    K. I. Kulish, A. S. Novikov, P. M. Tolstoy, D. S. Bolotin, N. A. Bokach, A. A. Zolotarev, and V. Y. Kukushkin. J. Mol. Struct., 2016, 1111, 142–150.Google Scholar
  30. 30.
    A. A. Melekhova, A. S. Novikov, K. V. Luzyanin, N. A. Bokach, G. L. Starova, V. V. Gurzhiy, and V. Y. Kukushkin. Inorg. Chim. Acta, 2015, 434, 31–36.Google Scholar
  31. 31.
    X. Ding, M. J. Tuikka, P. Hirva, V. Y. Kukushkin, A. S. Novikov, and M. Haukka. CrystEngComm, 2016, 18(11), 1987–1995.Google Scholar
  32. 32.
    D. M. Ivanov, A. S. Novikov, I. V. Ananyev, Y. V. Kirina, and V. Y. Kukushkin. Chem. Commun., 2016, 52(32), 5565–5568.Google Scholar
  33. 33.
    T. V. Serebryanskaya, A. S. Novikov, P. V. Gushchin, M. Haukka, R. E. Asfin, P. M. Tolstoy, and V. Y. Kukushkin. Phys. Chem. Chem. Phys., 2016, 18, 20, 14104–14112.Google Scholar
  34. 34.
    D. M. Ivanov, A. S. Novikov, G. L. Starova, M. Haukka, and V. Y. Kukushkin. CrystEngComm, 2016, 18(28), 5278–5286.Google Scholar
  35. 35.
    A. S. Mikherdov, M. A. Kinzhalov, A. S. Novikov, V. P. Boyarskiy, I. A. Boyarskaya, D. V. Dar′in, G. L. Starova, and V. Y. Kukushkin. J. Am. Chem. Soc., 2016, 138(42), 14129–14137.Google Scholar
  36. 36.
    D. M. Ivanov, M. A. Kinzhalov, A. S. Novikov, I. V. Ananyev, A. A. Romanova, V. P. Boyarskiy, M. Haukka, and V. Y. Kukushkin. Crys. Growth Des., 2017, 17(3), 1353–1362.Google Scholar
  37. 37.
    S. A. Adonin, I. D. Gorokh, A. S. Novikov, P. A. Abramov, M. N. Sokolov, and V. P. Fedin. Chem.–Eur. J., 2017, 23(62), 15612–15616.Google Scholar
  38. 38.
    Z. M. Bikbaeva, D. M. Ivanov, A. S. Novikov, I. V. Ananyev, N A. Bokach, and V. Y. Kukushkin. Inorg. Chem., 2017, 56(21), 13562–13578.Google Scholar
  39. 39.
    S. A. Adonin, I. D. Gorokh, P. A. Abramov, A. S. Novikov, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin. Eur. J. Inorg. Chem., 2017, 2017(42), 4925–4929.Google Scholar
  40. 40.
    E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285(3), 170–173.Google Scholar
  41. 41.
    M. V. Vener, A. N. Egorova, A. V. Churakov, and V. G. Tsirelson. J. Comput. Chem., 2012, 33(29), 2303–2309.Google Scholar
  42. 42.
    E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. J. Chem. Phys., 2002, 117(12), 5529–5542.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Kinzhalov
    • 1
  • A. S. Novikov
    • 1
  • O. V. Khoroshilova
    • 1
  • N. A. Bokach
    • 1
  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations