Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1288–1298 | Cite as

Dft Study of the Structural and Electronic Properties of Conducting Oligo(p-Fluorophenylthiophene)

  • H. NikoofardEmail author
  • A. H. Amin
Article
  • 12 Downloads

Abstract

A comprehensive theoretical study on the conducting oligomeric systems is carried out in view of their potential application in electrochemical charge storage. Density functional theory (DFT) calculations are carried out on a series of oligomers made up of 3-(p-fluorophenyl)-thiophene (FPT) to estimate the geometric and electronic structures, conjugated lengths, bandwidths, and energetic properties of polymeric systems. The calculations are performed on the dimer up to octamer chains in the ground state and both pand n-doped phases. The results obtained show that the conjugated system in p- and n-doped oligo(FPT)s has a higher distance with more planar chains with respect to their neutral forms. The band gap energy between the frontier molecular orbitals decreases dramatically for both ionic states, and approaches a low limiting value with increasing oligomer length. The charge delocalization through the monomer rings along the backbone oligo(FPT)s reveals that the p- and n-doped states had more suitable properties, reflecting the electron and hole transport characteristics for conductivity, respectively. The calculated first excitation energies for oligo(FPT)s at the time-dependent B3LYP/6-31G(d,p) level of theory indicate that both doped oligomers have lower excitation energies, which display a red shift in their absorption spectra. For polymeric systems, the evolution of ionization potential, electron affinity, electron chemical potential, molecular hardness, and thermodynamic stability is made through the extrapolated oligomer ones.

Keywords

conducting polymer oligo(p-fluorophenylthiophene) density functional theory doped state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10947_2018_996_MOESM1_ESM.pdf (54 kb)
Supplementary Materials to: DFT Study of the Structural and Electronic Properties of Conducting Oligo (p-Fluorophenylthiophene)

References

  1. 1.
    S. S. Sun and N. S. Sariciftci. Organic Photovoltaics, Mechanisms, Materials and Devices. New York: CRC Press, 2005.Google Scholar
  2. 2.
    H. He, J. Zhu, N. J. Tau, L. A. Nagahara, I. Amlani, and R. Tsui. J. Am. Chem. Soc., 2001, 123, 7730.CrossRefGoogle Scholar
  3. 3.
    Z. H. Kafafi. Organic Electroluminescence. Taylor and Francis, New York, 2005.CrossRefGoogle Scholar
  4. 4.
    J. M. Yeh, C. L. Chen, C. Y. Ma, K. R. Lee, Y. Wei, and S. Li. Polymer, 2002, 43, 2729.CrossRefGoogle Scholar
  5. 5.
    C. D. Entwistle and T. B. Marder. Chem. Mater., 2004, 16, 4574.CrossRefGoogle Scholar
  6. 6.
    Y. Sun and S. Wang. Inorg. Chem., 2010, 49, 4394.CrossRefGoogle Scholar
  7. 7.
    X. Lin, J. Li, E. Smela, and S. Tip. Int. J. Quantum Chem., 2005, 102, 980.CrossRefGoogle Scholar
  8. 8.
    G. Garcia, A. Garzon, J. M. Granadino–Roldan, M. Moral, A. Navarro, and M. Fernandez–Gomez. J. Phys. Chem. C, 2011, 115, 6922.CrossRefGoogle Scholar
  9. 9.
    M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, and T. J. Marks. J. Am. Chem. Soc., 2003, 125, 9414.CrossRefGoogle Scholar
  10. 10.
    H. Spanggaard and F. C. Krebs. Sol. Energy Mater. Sol. Cells, 2004, 83, 125.CrossRefGoogle Scholar
  11. 11.
    K. Kaeriyama, S. Tanaka, M. A. Sato, and K. Hamada. Synth. Met., 1989, 28, 611.CrossRefGoogle Scholar
  12. 12.
    K. Kaneto, S. Ura, K. Yoshino, and Y. Inuishi. Jpn. J. Appl. Phys., 1984, 23, L189.Google Scholar
  13. 13.
    M. A. Sato, S. Tanaka, and K. Kaeriyama. J. Chem. Soc., Chem. Commun., 1987, 1725.Google Scholar
  14. 14.
    R. M. Crooks, O. M. R. Chyan, and M. S. Wrighton. Chem. Mater., 1989, 1, 2.CrossRefGoogle Scholar
  15. 15.
    J. P. Ferraris and T. L. Lambert. J. Chem. Soc., Chem. Commun., 1991, 1268.Google Scholar
  16. 16.
    A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, and A. B. Holmes. Chem. Rev., 2009, 109, 897.CrossRefGoogle Scholar
  17. 17.
    P. Heremans, D. Cheyns, and B. P. Rand. Acc. Chem. Res., 2009, 42, 1740.CrossRefGoogle Scholar
  18. 18.
    S. Gűnes, H. Neugebauer, and N. S. Sariciftci. Chem. Rev., 2007, 107, 1324.CrossRefGoogle Scholar
  19. 19.
    M. A. Sato, S. Tanaka, and K. Kaeriyama. Makromol. Chem., 1989, 190, 1233.CrossRefGoogle Scholar
  20. 20.
    J. Roncali. Chem. Rev., 1992, 92, 711.CrossRefGoogle Scholar
  21. 21.
    J. Roncali, H. K. Youssoufi, R. Garreau, F. Garnie, and M. Lemaire. J. Chem. Soc., Chem. Commun., 1990, 414.Google Scholar
  22. 22.
    M. Lemaire, R. Garreau, D. Delabouglise, J. Roncali, H. K. Youssoufi, and F. Garnier. New J. Chem., 1990, 14, 359.Google Scholar
  23. 23.
    H. K. Youssoufi, R. Garreau, F. Garnier, and M. Lemaire. J. Roncali, Synth. Met., 1991, 43, 2916.CrossRefGoogle Scholar
  24. 24.
    D. Ofer, R. M. Crooks, and M. S. Wrighton. J. Am. Chem. Soc., 1990, 112, 7869.CrossRefGoogle Scholar
  25. 25.
    T. R. Jow and L. W. Shacklette. J. Electrochem. Soc., 1988, 135, 541.CrossRefGoogle Scholar
  26. 26.
    P. A. DePra, J. G. Gaudiello, and T. J. Marks. Macromolecules, 1988, 21, 2295.CrossRefGoogle Scholar
  27. 27.
    A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris. J. Power Sources, 1994, 47, 89.CrossRefGoogle Scholar
  28. 28.
    H. Nikoofard. J. Fluorine Chem., 2016, 185, 181.CrossRefGoogle Scholar
  29. 29.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head–Gordon, E. S. Replogle, and J. A. Pople. Gaussian 09W, Gaussian Inc., Pittsburgh PA, 2009.Google Scholar
  30. 30.
    G. L. Zhang, H. Zhang, D. P. Li, D. Chen, X. Y. Yu, B. Liu, and Z. S. Li. Theor. Chem. Acc., 2008, 121, 109.CrossRefGoogle Scholar
  31. 31.
    U. Salzner, P. G. Pickup, R. A. Poirier, and J. B. Lagowski. J. Phys. Chem. A, 1998, 102, 2572.CrossRefGoogle Scholar
  32. 32.
    C. J. Cramer and D. G. Truhlar. Phys. Chem. Chem. Phys., 2009, 11, 10757.CrossRefGoogle Scholar
  33. 33.
    S. Suramitr, A. Piriyagagoon, P. Wolschann, and S. Hannongbua. Theor. Chem. Acc., 2012, 131, 1209.CrossRefGoogle Scholar
  34. 34.
    R. G. Parr, L. V. Szentpaly, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922.CrossRefGoogle Scholar
  35. 35.
    J. L. Moncada and A. Toro–Labbe. Chem. Phys. Lett., 2006, 429, 161.CrossRefGoogle Scholar
  36. 36.
    H. Sabzyan and H. Nikoofard. Chem. Phys., 2004, 306, 105.CrossRefGoogle Scholar
  37. 37.
    H. Nikoofard and M. Gholami. C.R. Chimie., 2014, 17, 1034.CrossRefGoogle Scholar
  38. 38.
    R. Azumi, G. Götz, T. Debaerdemaeker, and P. Bäuerle. Chem. Eur. J., 2000, 6, 735.CrossRefGoogle Scholar
  39. 39.
    M. Levy and A. Nagy. Phys. Rev. Lett., 1999, 83, 4361.CrossRefGoogle Scholar
  40. 40.
    A. Omrani and H. Sabzyan. J. Phys. Chem. A, 2005, 109, 8874.CrossRefGoogle Scholar
  41. 41.
    R. Colle and A. Curioni. J. Phys. Chem. A, 2000, 104, 8546.CrossRefGoogle Scholar
  42. 42.
    R. J. Waltman, A. F. Diaz, and J. Bargon.J. Phys. Chem., 1984, 88, 4343.CrossRefGoogle Scholar
  43. 43.
    A. Hlel, A. Mabrouk, M. Chemek, and K. Alimi. Spectrochim. Acta A, 2012, 99, 126.CrossRefGoogle Scholar
  44. 44.
    M. A. De Oliveira, H. Duarte, J. Pernaut, and W. B. De Almeida. J. Phys. Chem. A, 2000, 104, 8256.CrossRefGoogle Scholar
  45. 45.
    H. Cao, J. Ma, G. Zhang, and Y. Jiang. Macromolecules, 2005, 38, 1123.CrossRefGoogle Scholar
  46. 46.
    J. W. Ochterski. Gaussian white paper, Thermochemistry in Gaussian 2000; http://www.gaussian.com/g_whitepap/thermo.htm.Google Scholar
  47. 47.
    Z. H. Levine and P. Soven. Phys. Rev. A, 1984, 29, 625.CrossRefGoogle Scholar
  48. 48.
    D. Jacquemin, E. A. Perpete, I. Ciofini, and C. Adamo. Acc. Chem. Res., 2009, 42, 326.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryShahrood University of TechnologyShahroodIran

Personalised recommendations