Journal of Structural Chemistry

, Volume 59, Issue 6, pp 1258–1264 | Cite as

First Principles Investigations of the Crystal Structure, Electron Spectra, and Chemical Bonding in the Low-Temperature Phase of Lithium Imide

  • N. G. KravchenkoEmail author
  • V. V. Zhdanov
  • E. B. Kaizer
  • A. S. Poplavnoi


The density functional method in the full-electron approximation is used to calculate optimized structural parameters, band spectrum, density of states, electron density maps and to study chemical bonding in the low-temperature phase of lithium imide with a crystal structure of the space group Ima2. The valence band width is 15.14 eV, and it consists of three subzones (slightly dispersed bottom subzone, medium subzone, and top subzone with a width of ~2.4 eV) due to dispersion cased by hybridization of hydrogen s states and nitrogen p states. The top of the valence band and the bottom of the conduction band are in the center of the Brillouin zone, the width of the band gap is 4.48 eV, the absorption edge is direct. The electron density maps demonstrate chains of N–H complexes bound by pairs of Li atoms. The Li–N bond is predominantly ionic, while the N–H bond is polar covalent.


hydrogen storage lithium imide density functional electronic spectra chemical bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. P. Tarasov, M. V. Lototskii, and V. A. Yartys. Russ. J. G. Chem., 2006, L(6), 34.Google Scholar
  2. 2.
    V. M. Azhazha, M. A. Tikhonovsky, A. G. Shepelev, Yu. P. Kurilo, T. A. Ponomarenko, and D. V. Vinogradov. Probl. At. Sci. Technol., 2006, 15(1), 145.Google Scholar
  3. 3.
    B. Sakintuna, F. Lamari–Darkrim, and M. Hirscher. Int. J. Hydrogen Energy, 2007, 32, 1121.CrossRefGoogle Scholar
  4. 4.
    K. Hoang, A. Janotti, and C. G. Van de Walle. Phys. Rev. B, 2012, 85, 064115.CrossRefGoogle Scholar
  5. 5.
    J. F. Herbst and L. G. Jr. Hector. Phys. Rev., 2005, 72, 125120–125128.CrossRefGoogle Scholar
  6. 6.
    B. Magyari–Köpe, V. Ozolinš, and C. Wolverton. Phys. Rev. B, 2006, 73, 220101–1–4.CrossRefGoogle Scholar
  7. 7.
    L. G. Jr. Hector and J. F. Herbst. J. Phys.: Condens. Matter, 2008, 064229, 1–11.Google Scholar
  8. 8.
    Q. Wang, Y. Chan, X. Zheng, G. Niu, Ch. Wu, and M. Tao. Phys. B: Condens. Matter, 2009, 404, 3431–3434.CrossRefGoogle Scholar
  9. 9.
    M. Balogh, C. Jones, J. F. Herbst, L. G. Hector, and K. Matthew. J. Alloys Compd., 2006, 420, 326–336.CrossRefGoogle Scholar
  10. 10.
    J. Yang, J. Lamsal, Q. Cai, W. B. Yelon, and W. J. James. Mater. Res. Soc. Symp. Proc., 2008, 1098, 54–59.CrossRefGoogle Scholar
  11. 11.
    K. Ohoyama, Y. Nakamori, S. I. Orimo, and K. Yamada. J. Phys. Soc. Jpn, 2005, 74(1), 483–487.Google Scholar
  12. 12.
    T. Noritake, H. Nozaki, M. Aoki, S. Towato, G. Kitahara, Y. Nakamori, and S. Orimo. J. All. Compd., 2005, 393, 264–268.CrossRefGoogle Scholar
  13. 13.
    T. Mueller and G. Ceder. Phys. Rev., 2010, 82, 174307–174307–7.CrossRefGoogle Scholar
  14. 14.
    T. Mueller and G. Ceder. Phys. Rev. B, 2006, 74, 134104–1–7.CrossRefGoogle Scholar
  15. 15.
    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich–Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D′Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman. Int. J. Quantum Chem., 2014, 114, 1287.CrossRefGoogle Scholar
  16. 16.
    R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich–Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà and Y. Noël. CRYSTAL14 User′s. Torino: Manual University of Torino, 2014.Google Scholar
  17. 17.
    M. F. Peintinger, D. V. Oliveira, and T. Bredow. J. Comput. Chem, 2013, 34(6), 451.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Kravchenko
    • 1
    Email author
  • V. V. Zhdanov
    • 1
  • E. B. Kaizer
    • 1
  • A. S. Poplavnoi
    • 1
  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations