Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1241–1250 | Cite as

Novel Phthalocyanines Containing Guaiacol Azo Dyes: Synhthesis, Antioxidant, Antibacterial, and Anticancer Activity

  • C. KantarEmail author
  • B. Kaya
  • M. Türk
  • S. Şaşmaz
Article
  • 33 Downloads

Abstract

In an attempt to understand the antibacterial, antioxidant, and anticancer properties of phthalocyanines containing azo dye, new metallophthalocyanines (M: Mn, Co, Zn) substituted with guaiacol azo dyes are described. The high DPPH scavenging and ferrous ion chelating activity are obtained from almost all compounds. All compounds exhibit a poor antibacterial activity against the studied bacteria. Cytotoxicity, apoptotic and necrotic effects are examined on human breast cancer cells (MCF-7) and fibroblast cells. It is determined that methoxy groups at newly synthesized compounds increase the antioxidant property but decrease other antibacterial and anticancer properties.

Keywords

phthalocyanine azo dyes antibacterial antioxidant anticancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. P. Lever and C. C. Leznoff. Abstr. Pap. Am. Chem. S, 1988, 195, 611–INOR.Google Scholar
  2. 2.
    A. B. P. Lever, M. R. Hempstead, C. C. Leznoff, W. Liu, M. Melnik, W. A. Nevin, and P. Seymour. Pure Appl. Chem., 1986, 58(11), 1467–1476.CrossRefGoogle Scholar
  3. 3.
    D. S. Weiss and M. Abkowitz. Chem. Rev., 2010, 110(1), 479–526.CrossRefGoogle Scholar
  4. 4.
    C. C. Leznoff, A. M. D’Ascanio, and S. Z. Yildiz. J. Porphyrins Phthalocyanines, 2000, 4(1), 103–111.CrossRefGoogle Scholar
  5. 5.
    M. K. Nazeeruddin, R. Humphry–Baker, M. Gratzel, D. Wohrle, G. Schnurpfeil, G. Schneider, A. Hirth, and N. Trombach. J. Porphyrins Phthalocyanines, 1999, 3(3), 230–237.CrossRefGoogle Scholar
  6. 6.
    C. Pannemann, V. Dyakonov, J. Parisi, O. Hild, and D. Wohrle. Synth. Met., 2001, 121(1–3), 1585/1586.Google Scholar
  7. 7.
    S. H. Jung, J. H. Choi, S. M. Yang, W. J. Cho, and C. S. Ha. Mat. Sci. Eng. B–Solid., 2001, 85(2–3), 160–164.Google Scholar
  8. 8.
    D. Dini, M. Barthel, and M. Hanack. Eur. J. Org. Chem., 2001, (20), 3759–3769.Google Scholar
  9. 9.
    K. F. Moquin and A. C. Michael. J. Neurochem., 2011, 117(1), 133–142.CrossRefGoogle Scholar
  10. 10.
    J. Sleven, C. Gorller–Walrand, and K. Binnemans. Mat. Sci. Eng. C–Bio S, 2001, 18(1–2), 229–238.Google Scholar
  11. 11.
    M. Hanack and M. Lang. Adv. Mater., 1994, 6(11), 819–833.CrossRefGoogle Scholar
  12. 12.
    P. Mashazi, T. Mugadza, N. Sosibo, P. Mdluli, S. Vilakazi, and T. Nyokong. Talanta, 2011, 85(4), 2202–2211.CrossRefGoogle Scholar
  13. 13.
    H. Y. Yenilmez, A. I. Okur, and A. Gul. J. Organomet. Chem., 2007, 692(5), 940–945.CrossRefGoogle Scholar
  14. 14.
    C. Kantar, F. Mert, and S. Sasmaz. J. Organomet. Chem., 2011, 696(18), 3006–3010.CrossRefGoogle Scholar
  15. 15.
    H. Y. Y. Akkurt, A. I. Okur, and A. Gul. J. Porphyrins Phthalocyanines, 2012, 16(2), 192–199.CrossRefGoogle Scholar
  16. 16.
    J. Kamenik, F. Sebesta, J. John, V. Bohmer, V. Rudzevich, and B. Gruner. J. Radioanal. Nucl. Chem., 2015, 304(1), 313–319.CrossRefGoogle Scholar
  17. 17.
    C. Gruttner, V. Bohmer, A. Casnati, J. F. Dozol, D. N. Reinhoudt, M. M. Reinoso–Garcia, S. Rudershausen, J. Teller, R. Ungaro, W. Verboom, and P. S. Wang. J. Magn. Magn. Mater., 2005, 293(1), 559–566.CrossRefGoogle Scholar
  18. 18.
    T. V. Tikhomirova, R. A. Badaukayte, V. P. Kulinich, and G. P. Shaposhnikov. Russ. J. Gen. Chem., 2011, 81(11), 2355–2361.CrossRefGoogle Scholar
  19. 19.
    G. K. Kantar, E. Hacıalioğlu, S. Şaşmaz, and J. El–Cezerî. Sci., Eng., 2014, 1(2), 32–37.Google Scholar
  20. 20.
    D. Wesenberg, I. Kyriakides, and S. N. Agathos. Biotechnol Adv., 2003, 22(1–2), 161–187.Google Scholar
  21. 21.
    C. Novotny, K. Svobodova, A. Kasinath, and P. Erbanova. Int. Biodeterior. Biodegrad., 2004, 54(2–3), 215–223.Google Scholar
  22. 22.
    C. Kantar, H. Akal, B. Kaya, F. Islamoglu, M. Turk, and S. Sasmaz. J. Organomet. Chem., 2015, 783, 28–39.CrossRefGoogle Scholar
  23. 23.
    J. Sasaki, S. Matsumoto, H. Kan, T. Yamada, M. Koizumi, Y. Mizuguchi, and E. Uchida. J. Nippon Med. Sch., 2012, 79(4), 259–266.CrossRefGoogle Scholar
  24. 24.
    H. Kawamura, K. Nishino, S. Matsumoto, and I. Ueno. J. Heat Trans–T Asme., 2012, 134(3).Google Scholar
  25. 25.
    K. Kawakami, M. Ebara, H. Izawa, N.M. Sanchez–Ballester, J. P. Hill, and K. Ariga. Curr. Med. Chem., 2012, 19(15), 2388–2398.CrossRefGoogle Scholar
  26. 26.
    W. Maqanda, T. Nyokong, and M. D. Maree. J. Porphyrins Phthalocyanines, 2005, 9(5), 343–351.CrossRefGoogle Scholar
  27. 27.
    F. Koksal, F. Ucun, E. Agar, and I. Kartal. J. Chem. Res–S, 1998, (2), 96/97.Google Scholar
  28. 28.
    T. C. P. Dinis, V. M. C. Madeira, and L. M. Almeida. Arch. Biochem. Biophys, 1994, 315(1), 161–169.CrossRefGoogle Scholar
  29. 29.
    D. Kalemba and A. Kunicka. Curr. Med. Chem., 2003, 10(10), 813–829.CrossRefGoogle Scholar
  30. 30.
    A. Bilgin, B. Ertem, and Y. Gok. Eur. J. Inorg. Chem., 2007, (12), 1703–1712.CrossRefGoogle Scholar
  31. 31.
    A. Strozecka, M. Soriano, J. I. Pascual, and J. J. Palacios. Phys. Rev. Lett., 2012, 109(14).Google Scholar
  32. 32.
    B. H. Pei, Y. Shen, W. X. Cheng, F. Gu, M. Cao, and J. C. Zhang. Seventh Intern. Conf. on Thin Film Physics, Applications, 2011, 7995.Google Scholar
  33. 33.
    N. Sehlotho, M. Durmus, V. Ahsen, and T. Nyokong. Inorg. Chem. Commun, 2008, 11(5), 479–483.CrossRefGoogle Scholar
  34. 34.
    C. Da Porto, S. Calligaris, E. Celotti, and M. C. Nicoli. J. Agric. Food Chem., 2000, 48(9), 4241–4245.CrossRefGoogle Scholar
  35. 35.
    N. Cotelle, J. L. Bernier, J. P. Catteau, J. Pommery, J. C. Wallet, and E. M. Gaydou. Free Radical Bio Med., 1996, 20(1), 35–43.CrossRefGoogle Scholar
  36. 36.
    F. Yamaguchi, T. Ariga, Y. Yoshimura, and H. Nakazawa. J. Agric. Food Chem., 2000, 48(2), 180–185.CrossRefGoogle Scholar
  37. 37.
    A. Simić, D. Manojlović, D. Šegan, and M. Todorović. Molecules, 2007, 12(10), 2327.Google Scholar
  38. 38.
    M. Strlic, T. Radovic, J. Kolar, and B. Pihlar. J. Agric. Food Chem., 2002, 50(22), 6313–6317.CrossRefGoogle Scholar
  39. 39.
    A. E. Finefrock, A. I. Bush, and P. M. Doraiswamy. J. Am. Geriatr. Soc., 2003, 51(8), 1143–1148.CrossRefGoogle Scholar
  40. 40.
    P. Mladěnka, K. Macáková, T. Filipský, L. Zatloukalová, L. Jahodář, P. Bovicelli, I.P. Silvestri, R. Hrdina, and L. Saso. J. Inorg. Biochem., 2011, 105(5), 693–701.CrossRefGoogle Scholar
  41. 41.
    L. Liu, X. Xu, D. Cheng, X. Yao, and S. Pan. J. Agric. Food Chem., 2012, 60(17), 4336–4341.CrossRefGoogle Scholar
  42. 42.
    T. Wu, M. He, X. Zang, Y. Zhou, T. Qiu, S. Pan, and X. Xu. Biochim. Biophys. Acta, Biomembr., 2013, 1828(11), 2751–2756.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Recep Tayyip Erdogan University, Faculty of Arts and Sciences, Department of ChemistryRizeTurkey
  2. 2.Bingöl University, Faculty of Arts and Sciences, Department of Molecular Biology and GeneticBingölTurkey
  3. 3.Kırıkkale University, Faculty of Engineering, Department of BioengineeringKırıkkaleTurkey

Personalised recommendations