Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1221–1227 | Cite as

Structural Comparison of Lithium Iodide Complexes of Symmetrical and Unsymmetrical [CH2(PPh2NSiMe3)(PPh2NR)](R = SiMe3, H) Ligands

  • R. Thirumoorthi
  • T. Chivers
Article
  • 9 Downloads

Abstract

Compounds [(LiI)1] and [(LiI)2]2 crystallize in the centrosymmetric space group P21/n. They are made up of neutral ligands [H2C(PPh2NSiMe3)2] (1) and [H2C(PPh2NSiMe3)(PPh2NH)] (2) and a LiI molecule. In both cases, N,N chelation with lithium is observed. Ligand 2 contains two different nitrogen centres viz., P=N(SiMe3) and P=N(H), which are coordinated unsymmetrically to lithium (Li–N = 2.055(8) and 2.072(8) Å) to form [{LiI}{CH2(PPh2NSiMe3)×(PPh2NH)}] as monomer units that are linked via intermolecular coordination between NH and Li (2.097(8) Å) to form a central four-membered ring, Li2N2 with four-coordinate lithium atoms. In contrast, [(LiI)1] is monomeric with a three-coordinate lithium centre. This disparity is reflected in the Li–I bond distances (2.699(11) Å for [(LiI)1] and 2.824(7) Å) for [(LiI)2]2). The dimer [(LiI)2]2 displays intramolecular Csp3H–π and intermolecular Csp2H–π interactions (between phosphorus-substituted phenyl groups).

Keywords

crystal structure Si–N cleavage iminophosphoranyl complexes lithium iodide Li2N2 core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. K. Panda and P. W. Roesky. Chem. Soc. Rev., 2009, 38, 2782–2804.CrossRefGoogle Scholar
  2. 2.
    S. T. Liddle, D. P. Mills, and A. J. Wooles. Chem. Soc. Rev., 2011, 40, 2164–2176.CrossRefGoogle Scholar
  3. 3.
    M. Ganesan, P. E. Fanwick, and R. A. Walton. Inorg. Chim. Acta, 2003, 346, 181–186.CrossRefGoogle Scholar
  4. 4.
    R. Thirumoorthi, T. Chivers, C. Gendy, and I. Vargas–Baca. Organometallics, 2013, 32, 5360–5373.CrossRefGoogle Scholar
  5. 5.
    C. M. Ong and D. W. Stephan. J. Am. Chem. Soc., 1999, 121, 2939–2940.CrossRefGoogle Scholar
  6. 6.
    G. M. Sheldrickю Acta Crystallogr., 2008, A64, 112–122.Google Scholar
  7. 7.
    K. Bradenburg. Diamond, version 3.2k. Crystal Impact GbR: Bonn, Germany, 2014.Google Scholar
  8. 8.
    R. P. K. Babu, K. Aparna, R. McDonald, and R. G. Cavell. Inorg. Chem., 2000, 39, 4981–4984.CrossRefGoogle Scholar
  9. 9.
    A. Müller, M. Möhlen, B. Neumüller, N. Faza, W. Massa, and K. Dehnicke. Z. Anorg. Allg. Chem., 1999, 625, 1748–1751.CrossRefGoogle Scholar
  10. 10.
    C. L. Raston, C. R. Whitaker, and A. H. White. J. Chem. Soc. Dalton Trans., 1988, 991–995.Google Scholar
  11. 11.
    A. Downard and T. Chivers. Eur. J. Inorg. Chem., 2001, 2193–2201.Google Scholar
  12. 12.
    T. Chivers, A. Downard, and M. Parvez. Inorg. Chem., 1999, 38, 4347–4353.CrossRefGoogle Scholar
  13. 13.
    C. R. Martinez and B. L. Iverson. Chem. Sci., 2012, 3, 2191–2201.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryCentral University of RajasthanBandarsindri, AjmerIndia
  2. 2.Department of ChemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations