Advertisement

Journal of Structural Chemistry

, Volume 59, Issue 5, pp 1195–1199 | Cite as

Crystal Structure and Properties of bis(5-Nitroimino-1,2,4-Triazolate-3-yl) Methane Aminoguanidium Salt

  • X. YinEmail author
  • J. Wang
  • Q. Ma
  • S.-M. Wang
Article
  • 7 Downloads

Abstract

A novel nitrogen-rich ionic salt of bis(aminoguanidium) bis(5-nitroimino-1,2,4-triazolate-3-yl) methane ((AG)2BNTM) is synthesized for the first time and its crystal structure is then determined by X-ray diffraction. Along with the crystal structures and the optimization of geometric structures, we employ the Hirshfeld surface analysis to analyze the types of interactions and relative energetic contributions of the weak intermolecular-interaction. Thermal stability was studied by the DSC-TGA technique.

Keywords

nitrogen-rich salt crystal structure Hirshfeld surface thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gao and J. M. Shreeve. Chem. Rev., 2011, 111, 7377–7436.CrossRefGoogle Scholar
  2. 2.
    P. Yin, Q. Zhang, and J. M. Shreeve. Acc. Chem. Res., 2016, 49, 4–16.CrossRefGoogle Scholar
  3. 3.
    M. S. Klenov, A. A. Guskov, O. V. Anikin, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, K. A. Lyssenko, and V. A. Tartakovsky. Angew. Chem. Int. Ed., 2016, 55, 1–5.CrossRefGoogle Scholar
  4. 4.
    Z. G. Aliev, T. K. Goncharov, S. M. Aldoshin, D. V. Dashko, A. G. Roslyakov, N. I. Shishov, and Yu. M. Milekhin. J. Struct. Chem., 2016, 57(8), 1613–1618.CrossRefGoogle Scholar
  5. 5.
    A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, and A. B. Sheremetev. RSC Adv., 2016, 6, 34921–34934.Google Scholar
  6. 6.
    D. V. Korchagin, S. M. Aldoshin, A. V. Chernyak, and S. V. Chapyshev. J. Struct. Chem., 2017, 58(3), 618–623.CrossRefGoogle Scholar
  7. 7.
    Y. Tang, C. He, G. H. Imler, D. A. Parrish, and J. M. Shreeve. J. Mater. Chem. A, 2016, 4, 13923–13929.CrossRefGoogle Scholar
  8. 8.
    D. Kumar, G. H. Imler. D. A. Parrish, and J. M. Shreeve. New J. Chem., 2017, 41, 4040–4047.CrossRefGoogle Scholar
  9. 9.
    D. Izsák, T. M. Klapötke, and C. Pflüger. Dalton Trans., 44, 17054–17063 2015,.Google Scholar
  10. 10.
    Q. Ma, Y. Chen, L. Liao, H. Lu, G. Fan, and J. Huang. Dalton Trans., 2017, 46, 7467–7479.CrossRefGoogle Scholar
  11. 11.
    A. A. Dippold, M. Feller, and T. M. Klapötke. Cent. Eur. J. Energ. Mater., 2011, 8, 261–278.Google Scholar
  12. 12.
    M. A. Spackman and D. Jayatilaka. CrystEngComm, 2009, 11, 19–32.CrossRefGoogle Scholar
  13. 13.
    M. A. Spackman and J. J. McKinnon. CrystEngComm, 2002, 4, 378–392.CrossRefGoogle Scholar
  14. 14.
    C. Zhang, X. Xue, Y. Cao, J. Zhou, A. Zhang, H. Li, Y. Zhou, R. Xu, and T. Gao. CrystEngComm, 2014, 16, 5905–5916.CrossRefGoogle Scholar
  15. 15.
    Y. Ma, A. Zhang, C. Zhang, D. Jiang, Y. Zhu, and C. Zhang. Cryst. Growth. Des., 2014, 14, 4703–4713.CrossRefGoogle Scholar
  16. 16.
    H. E. Kissinger. Anal. Chem., 1957, 29, 1702–1706.CrossRefGoogle Scholar
  17. 17.
    T. Ozawa. Bull. Chem. Soc. Jpn., 1957, 38, 1881–1886.CrossRefGoogle Scholar
  18. 18.
    P. G. Boswell. J. Therm. Anal. Calorim., 1980, 18, 353–356.CrossRefGoogle Scholar
  19. 19.
    N. Zohari, M. H. Keshavarz, and S. A. Seyedsadjadi. J. Therm. Anal. Calorim., 2014, 117, 423–432.CrossRefGoogle Scholar
  20. 20.
    H. Huang, Y. Shi, and J. Yang. J. Therm. Anal. Calorim., 2015, 121, 705–709.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Analysis and Testing CenterSouthwest University of Science and TechnologyMianyangP. R. China
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangP. R. China

Personalised recommendations